The Zhenzhu Spring, located in the Tengchong volcanic field, Yunnan, China, is an acid hot spring with high SO42−concentrations and intense acid aerosol generation. In order to understand the formation mechanism of sulfate minerals at the Zhenzhu Spring and provide a better insight into the sulfur isotope geochemistry of the associated Rehai hydrothermal system, we investigated the spring water hydrochemistry, mineralogy and major-element geochemistry of sulfate minerals at the Zhenzhu Spring together with the sulfur-oxygen isotope geochemistry of sulfur-containing materials at the Rehai geothermal field and compared the isotope results with those in other steam-heated environments. Subaerial minerals include a wide variety of sulfate minerals (gypsum, alunogen, pickeringite, tamarugite, magnesiovoltaite and a minor Mg–S–O phase) and amorphous SiO2. The δ34S values of the subaerial sulfate minerals at the Zhenzhu Spring varied subtly from –0.33 to 1.88‰ and were almost consistent with the δ34S values of local H2S (–2.6 to 0.6‰) and dissolved SO42−(–0.2 to 5.8‰), while the δ18O values (–8.94 to 20.1‰) were between that of the spring waters (–10.19 to –6.7‰) and atmospheric O2(~23.88‰). The results suggest that most of the sulfate minerals are derived from the oxidation of H2S, similar to many sulfate minerals from modern steam-heated environments. However, the rapid environmental change (different ratio of atmospheric and water oxygen) at the Zhenzhu Spring accounts for the large variation of δ18O. The formation of subaerial sulfate minerals around the Zhenzhu Spring is related to acid aerosols (vapour and acid water droplets). The intense activity of spring water around vents supply the aerosol with H2SO4(H2S oxidation and acid water droplets formed by bubble bursting) and few cations. Deposition of the acid sulfate aerosol forms the acid condensate, which attacks the underlying rocks and releases many cations and anions to form subaerial sulfate minerals at the Zhenzhu Spring.
Siliceous-sulphate rock coatings were observed at Zhenzhu Spring, an acid sulphate hot spring in the Tengchong volcanic field, China. These rock coatings are mainly formed of gypsum and amorphous silica. Some alum-(K), voltaite, α-quartz and muscovite were also found. Four different laminae are developed in the rock coatings: gypsum layer, tight siliceous layer, tabular siliceous layer and siliceous debris layer. The gypsum layer is located at the top of the rock coatings, while other siliceous layers appear below the gypsum layer. Geochemical modelling of the fluids was performed to identify the mechanisms responsible for the formation of gypsum and amorphous silica. The results indicated that the occurrence of gypsum is related to the acid-fog deposition and amorphous silica mainly originates from spring water. Fog deposition provided the rock coatings with abundant SO42− and Ca, and the subsequent complete evaporation of the condensed fluids produced gypsum. Seasonal climate change (especially variation in rainfall) determines the fluctuations of capillary action and dissolution. Rainfall events in the wet season led to periods of non-precipitating gypsum and promoted the capillary rise of the spring water. Slightly diluted capillary water (a small amount of rainwater) covered the rock coatings, formed a tight siliceous layer on the rock-coating surface and/or filled the pores among the gypsum crystals forming many tabular siliceous aggregates. Heavy rainfall (high dilution), however, resulted in non-precipitating amorphous silica and accelerated the gypsum dissolution, leaving tabular pores around tabular siliceous aggregates and forming a tabular siliceous layer.
Banded travertines are important parts of fissure ridge systems, but studies on geochemical characterization of banded travertines are limited. This study investigated the lithofacies and stable carbon and oxygen isotopic features of banded travertines from Xiagei (southwestern China) to examine their formation mechanisms. Petrographic analyses of the banded travertines revealed two lithotypes: thick-laminated palisade crystalline crust and thin-laminated composite crystalline crust. δ13C and δ18O of the Xiagei banded travertines range from 2.82‰ to 4.50‰ V-PDB, and from −25.86‰ to −20.90‰ V-PDB. Parent CO2 evaluation shows that the Xiagei banded travertines mainly received CO2 from the decarbonation of marine carbonates, but the contributions of magmatic CO2 and the dissolution of marine carbonates are also unneglectable. Significantly, the magmatic-derived CO2 might indicate that the delamination of the lithosphere along with the asthenosphere upwelling could be taking place in the eastern Tibetan plateau. Paleotemperature calculation shows that the Xiagei travertines were precipitated from moderate- to high-temperature hot springs (44.3 to 86.8 °C). Interestingly, the thick-laminated palisade crystalline crust and thin-laminated composite crystalline crust display calculated paleotemperature between 66.6 and 86.8 °C and between 56.6 and 77.7 °C, respectively, reflecting the great role of water temperature in controlling the lithofacies of banded travertines. A comparison between the banded travertines at Xiagei and other areas also shows temperature is a non-negligible factor controlling banded travertine precipitation. However, this does not mean that water temperature is the decisive controlling factor and more studies on banded travertines are still indispensable to disclose the potential factors controlling the factors/processes affecting banded travertine lithofacies. This study provides a good example for understanding the relationship between lithofacies and stable isotopic geochemical characteristics of travertine deposits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.