Cuticular wax covering the surface of fleshy fruit is closely related to fruit glossiness, development, and post-harvest storage quality. However, the information about formation characteristics and molecular mechanisms of cuticular wax in grape berry is limited. In this study, crystal morphology, chemical composition, and gene expression of cuticular wax in grape berry were comprehensively investigated. Morphological analysis revealed high density of irregular lamellar crystal structures, which were correlated with the glaucous appearances of grape berry. Compositional analysis showed that the dominant wax compounds were triterpenoids, while the most diverse were alkanes. The amounts of triterpenoids declined sharply after véraison, while those of other compounds maintained nearly constant throughout the berry development. The amounts of each wax compounds varied among different cultivars and showed no correlation with berry skin colors. Moreover, the expression profiles of related genes were in accordance with the accumulation of wax compounds. Further investigation revealed the contribution of cuticular wax to the water preservation capacity during storage. These findings not only facilitate a better understanding of the characteristics of cuticular wax, but also shed light on the molecular basis of wax biosynthesis in grape.
Flavonoids in grapes contribute the
quality of the berry, but the
flavonoid diversity and the regulatory networks underlying the variation
require a further investigation. In this study, we integrated multi-omics
data to systematically explore the global metabolic and transcriptional
profiles in the skins and pulps of three grape cultivars. The results
revealed large-scale differences involved in the flavonoid metabolic
pathway. A total of 133 flavonoids, including flavone and flavone C-glycosides, were identified. Beyond the visible differences
of anthocyanins, there was large variation in other sub-branched flavonoids,
most of which were positively correlated with anthocyanins in grapes.
The expressions of most flavonoid biosynthetic genes and the major
regulators MYBA1 were strongly consistent with the
changes in flavonoids. Integrative analysis identified two novel transcription
factors (MYB24 and MADS5) and two
ubiquitin proteins (RHA2) as promising regulatory
candidates for flavonoid biosynthesis in grapes. Further verification
in various grape accessions indicated that five major genes including flavonol 3′5′-hydroxylase (F3′5′H), UDP-glucose:flavonoid 3-O-glycosyl-transferase, anthocyanin O-methyltransferase, acyltransferase (3AT), and glutathione S-transferase (GST4) controlled flavonoid variation in grape
berries. These findings provide valuable information for understanding
the mechanism of flavonoid biosynthesis in grape berries and the further
development of grape health products.
Background: Grape is highly sensitive to gibberellin (GA), which is crucial during seed and berry development (SBD) either by itself or by interacting with other hormones, such as auxin, Abscisic acid (ABA), and Cytokinin (CK). However, no systematic analysis of GA metabolic and signal transduction (MST) pathway has been undertaken in grapevine. Results: In this study, total endogenous GA 3 content significantly decreased during SBD, and a total of 48 known genes in GA metabolic (GAM; 31) and signal transduction (ST; 17) pathways were identified in this process. In the GAM pathway, out of 31 genes, VvGA20ox1-1, VvGA3ox4-1, and VvGA2ox1-1 may be the major factors interacting at the green-berry stage (GBS) accompanied with higher accumulation rate. GA biosynthesis was greater than GA inactivation at GBS, confirming the importance of seeds in GA synthesis. The visible correlation between endogenous GA 3 content and gene expression profiles suggested that the transcriptional regulation of GA biosynthesis pathway genes was a key mechanism of GA accumulation at the stone-hardening stage (SHS). Interestingly, we observed a negative feedback regulation between VvGA3oxs-VvGAI1-4, VvGA2oxs-VvGAI1-4, and VvGID1B-VvGAI1-4 in maintaining the balance of GA 3 content in berries. Moreover, 11 miRNAs may be involved in the modulation of GA MST pathway by mediating their target genes, such as VvGA3ox, VvGID1B, and VvGAMYB. Many genes in auxin, ABA, and CK MST pathways were further identified and found to have a special pattern in the berry, and the crosstalk between GA and these hormones may modulate the complex process during SBD through the interaction gene network of the multihormone pathway. Lastly, based on the expression characterization of multihormone MST pathway genes, a proposed model of the GA-mediated multihormone regulatory network during SBD was proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.