Microporous silica (MS) materials are a kind of an emerging and promising adsorbent precursor. MS prepared from vermiculite has the advantages of easy preparation, low cost, and low layer charge. In this study, organo-MS (OMS) modified by a typical gemini surfactant 1,2-bis(hexadecyldimethylammonio)ethane dibromide (G 16 ) is first synthesized and proved to have effective retention capacity toward cationic dyes. Fourier transform infrared spectroscopy, TG-DTG, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Brunauer−Emmett−Teller are used to explore the structural characters of adsorbents. Gradient adsorption of compound MS (MS and OMS) in a binary dye system [methylene blue (MB) and crystal violet (CV)] was investigated. In a single system, the relationship between the adsorption capacity and influencing factors (dye concentration, contact time, temperature, and pH), adsorption kinetics, isotherms, as well as thermodynamics was comprehensively compared to reveal the adsorption mechanism. The adsorption values of MB and CV on MS and OMS are 308 mg g −1 (R = 77.0%, 15 min) and 250 mg g −1 (R = 83.3%), respectively, which may be caused by various intermolecular interactions (electrostatic or hydrophobic interactions) between the dye and adsorbent surface. In a binary system, the improved first spectroscopy method is used to calculate the individual concentration of the dye in the binary system. The total removal efficiency of gradient adsorption reaches as high as 89.5% (MB) and 86.4% (CV). In addition, compound MS can be effectively regenerated by HCl solution for several cycles.
Due to the low cost, high element abundance and intrinsic safety, potassium-ion batteries (KIBs) have attracted a surge of interest in recently years. Currently, the key challenge and obstacle to...
A novel multi-hydroxyl-containing gemini surfactant (G16) is first designed for modifying silica precursors (SiNPs), with the purpose of fabricating organic adsorbents targeted at methyl orange (MO). The purity of G16 and structural character of the resultant G16-SiNPs are unveiled through Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry-derivative thermogravimetry, scanning electron microscopy, and surface analysis (BET). Compared with SiNPs, G16-SiNPs exhibit enhanced hydrophobicity, enlarged interlayer spacing, and increased thermal weight losses with the modifier availability reaching as high as 100%. Enhanced MO adsorption is obtained from the higher adsorption capacity of G16-SiNPs (401.88 mg/g) than SiNPs (64.72 mg/g), which is more effective than most of the existing silica-based adsorbents. Pseudo-second-order and Langmuir models conform to all adsorption processes, indicating that the adsorption mainly relies on the availability of adsorption sites and characterized by a homogeneous adsorption form. By combining the experimental study and theoretical calculation methods, it can be demonstrated that the as-synthesized adsorbent G16-SiNPs own multi-active sites that contribute to multi-adsorption mechanisms. The partition process, electrostatic interactions, and OH−π interactions are all responsible for the adsorption performance of G16-SiNPs. This study throws light on the exploration of the superb MO adsorbent in aspects of not only the novel structured modifier and precursor but also theoretical analysis for gaining insights into the adsorption mechanism.
Photocatalytic degradation is one of the most promising emerging technologies for environmental pollution control. However, the preparation of efficient, low-cost photocatalysts still faces many challenges. TiO2 is a widely available and inexpensive photocatalyst material, but improving its catalytic degradation performance has posed a significant challenge due to its shortcomings, such as the easy recombination of its photogenerated electron–hole pairs and its difficulty in absorbing visible light. The construction of homogeneous heterojunctions is an effective means to enhance the photocatalytic performances of photocatalysts. In this study, a TiO2(B)/TiO2(A) homogeneous heterojunction composite photocatalyst (with B and A denoting bronze and anatase phases, respectively) was successfully constructed in situ. Although the construction of homogeneous heterojunctions did not improve the light absorption performance of the material, its photocatalytic degradation performance was substantially enhanced. This was due to the suppression of the recombination of photogenerated electron–hole pairs and the enhancement of the carrier mobility. The photocatalytic ability of the TiO2(B)/TiO2(A) homogeneous heterojunction composite photocatalyst was up to three times higher than that of raw TiO2 (pure anatase TiO2).
In view of the severe situation of global warming, China puts forward the carbon emission reduction target of “achieving carbon peak by 2030 and carbon neutrality by 2060”. Among all production activities, the energy sector emits the most carbon dioxide of nearly 90%, followed by the industrial sector of more than 10%. Therefore, the focus of carbon emission reduction is to reduce carbon emissions in the energy sector. Tibet possesses unique natural conditions and geographical environment, which is rich in renewable energy and water energy resources. There is a huge space for the development of renewable and clean energy in Tibet. In order to provide sufficient energy for the Tibetan people and achieve the goal of carbon neutrality, Tibet needs to vigorously develop clean energy in the next 40 years. First of all, it is necessary to formulate a systematic energy development plan for the next 40 years, and formulate different energy development plans according to the natural conditions of different regions, so as to put the energy development plan in place. Tibet can not only achieve the goal of carbon neutrality on time, but also contribute to the power transmission from the West to the East.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.