We have previously reported that royal jelly (RJ) from honeybees (Apis mellifera) has weak estrogenic activity mediated by interaction with estrogen receptors that leads to changes in gene expression and cell proliferation. In this study, we isolated four compounds from RJ that exhibit estrogenic activity as evaluated by a ligand-binding assay for the estrogen receptor (ER) b. These compounds were identified as 10-hydroxy-trans-2-decenoic acid, 10-hydroxydecanoic acid, trans-2-decenoic acid and 24-methylenecholesterol. All these compounds inhibited binding of 17b-estradiol to ERb, although more weakly than diethylstilbestrol or phytoestrogens. However, these compounds had little or no effect on the binding of 17b-estradiol to ERa. Expression assays suggested that these compounds activated ER, as evidenced by enhanced transcription of a reporter gene containing an estrogen-responsive element. Treatment of MCF-7 cells with these compounds enhanced their proliferation, but concomitant treatment with tamoxifen blocked this effect. Exposure of immature rats to these compounds by subcutaneous injection induced mild hypertrophy of the luminal epithelium of the uterus, but was not associated with an increase in uterine weight. These findings provide evidence that these compounds contribute to the estrogenic effect of RJ.
Imidazole derivatives are effective ligands for promoting the [Ru3(CO)12]‐catalyzed hydroesterification of alkenes using formates. Extensive ligand screening was performed to identify 2‐hydroxymethylated imidazole as the optimal ligand. Neither carbon monoxide gas nor a directing group was required, and the reaction also showed a wide substrate generality. The Ru–imidazole catalyst system also promoted intramolecular hydrocarbamoylation to afford lactams. A Ru–imidazole complex was unambiguously analyzed by X‐ray crystallography, and it had a trinuclear structure derived from one [Ru3(CO)12] and two ligands. This complex was also successfully used for hydroesterification. The mechanism was examined in detail by using D‐ and 13C‐labeled formates, indicating that the hydroesterification reaction proceeds by a decarbonylation–recarbonylation pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.