The thermal decomposition of dimethyl methylphosphonate (DMMP), which is a simulant molecule for organophosphorus nerve agents, has been investigated on Cu clusters as well as on Cu films deposited on a TiO(2)(110) surface. Scanning tunneling microscopy studies were conducted to characterize the cluster sizes and surface morphologies of the deposited Cu clusters and films. Temperature-programmed desorption experiments demonstrated that the surface chemistry of DMMP is not sensitive to the size of the Cu clusters over the range studied in this work. DMMP reaction on an annealed 40 monolayer Cu film resulted in the desorption of H(2), methane, methyl, formaldehyde, methanol, and molecular DMMP, and reaction on the small (4.4 +/- 0.9 nm diameter, 1.8 +/- 0.6 nm height) and large (10.7 +/- 1.9 nm diameter, 4.8 +/- 1.0 nm height) Cu clusters generated similar products. Formaldehyde and methane production is believed to occur via a methoxy intermediate on the Cu surface. These products are favored on the higher coverage Cu films that completely cover the TiO(2) surface since competing reaction pathways on TiO(2) are suppressed. X-ray photoelectron spectroscopy studies showed that DMMP begins to decompose on the Cu clusters upon adsorption at room temperature and that atomic carbon, atomic phosphorus, and PO(x) remain on the surface after DMMP decomposition.
Serum contains a variety of biomolecules, which play an important role in cell proliferation and survival. We sought to identify the serum factor responsible for mitigating tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis and to investigate its molecular mechanism. TRAIL induced effective apoptosis without serum, whereas bovine serum decreased apoptosis by suppressing cytochrome c release and caspase activation. Indeed, albumin-bound lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) inhibited TRAIL-induced apoptosis by suppressing caspase activation and cytochrome c release. LPA increased phosphatidylinositol 3-kinase (PI3K)-dependent Akt activation, cellular FLICE-inhibitory protein (cFLIP) expression, and Bad phosphorylation, resulting in inhibition of caspase-8 activation and Bad translocation to mitochondria. The antiapoptotic effect of LPA was abrogated by PI3K inhibitor, transfection with dominant-negative Akt, and specific downregulation of cFLIP expression using siRNA and further increased by siRNA-mediated suppression of Bad expression. Moreover, sera from ovarian cancer patients showed more protective effect against TRAIL-induced apoptosis than those from healthy donors, and this protection was suppressed by PI3K inhibitor. Our results indicate that albumin-bound LPA and S1P prevent TRAIL-induced apoptosis by upregulation of cFLIP expression and in part by Bad phosphorylation, through the activation of PI3K/Akt pathway.
Alumina nanofibers containing either platinum or rhodium crystalline nanoparticles have been successfully fabricated by electrospinning a solution of polyvinylpyrrolidone mixed with platinum or rhodium chloride and subsequent calcination and hydrogen reduction. Transmission electron microscopy images indicate that the platinum and rhodium nanoparticles are well dispersed on the electrospun alumina nanofibers. X-ray diffraction results demonstrate that the platinum and rhodium nanoparticles are crystalline, while the alumina matrix is amorphous. Furthermore, X-ray photoelectron spectroscopy was used to investigate the chemical nature of these nanofibers containing noble metals before and after calcination and hydrogen processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.