PurposeOur previous high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry study identified bladder cancer (BCA)-specific urine metabolites, including carnitine, acylcarnitines, and melatonin. The objective of the current study was to determine which metabolic pathways are perturbed in BCA, based on our previously identified urinary metabolome.Materials and MethodsA total of 135 primary BCA samples and 26 control tissue samples from healthy volunteers were analyzed. The association between specific urinary metabolites and their related encoding genes was analyzed.ResultsSignificant alterations in the carnitine-acylcarnitine and tryptophan metabolic pathways were detected in urine specimens from BCA patients compared to those of healthy controls. The expression of eight genes involved in the carnitine-acylcarnitine metabolic pathway (CPT1A, CPT1B, CPT1C, CPT2, SLC25A20, and CRAT) or tryptophan metabolism (TPH1 and IDO1) was assessed by RT-PCR in our BCA cohort (n=135). CPT1B, CPT1C, SLC25A20, CRAT, TPH1, and IOD1 were significantly downregulated in tumor tissues compared to normal bladder tissues (p<0.05 all) of patients with non-muscle invasive BCA, whereas CPT1B, CPT1C, CRAT, and TPH1 were downregulated in those with muscle invasive BCA (p<0.05), with no changes in IDO1 expression.ConclusionAlterations in the expression of genes associated with the carnitine-acylcarnitine and tryptophan metabolic pathways, which were the most perturbed pathways in BCA, were determined.
BackgroundThere is growing interest in circulating nucleic acids as cancer detection biomarkers. Therefore, the aim of the present study was to identify a key urinary cell-free RNA marker that may assist in the diagnosis of BC.ResultsFive cell-free RNAs were selected as candidate cell-free RNAs from tissue microarray data. An area under the curve (AUC) cut-off value of 0.7 in receiver operating characteristic (ROC) curve analysis identified four urinary cell-free RNAs for further analysis (CDC20, ESM1, UBE2C, and CA9; AUC = 0.716, 0.704, 0.721, and 0.702, respectively). Binary logistic regression analysis revealed that high expression of UBE2C was significantly associated with BC (OR, 1.754; CI, 1.147–2.682; p = 0.010). Analysis of UBE2C expression in urine samples from BC patients and hematuria controls yielded an AUC of 0.839, with a sensitivity of 82.5% and a specificity of 76.2%. UBE2C levels was significantly increased in G2 and G3 tumors compared to normal controls (p <0.001, respectively).Materials and MethodsUrine samples from 212 BC patients and 106 normal controls (64 healthy individuals and 42 with hematuria) were examined. The candidate cell-free RNAs identified from tissue microarrays derived from BC and normal control tissues was then measured in the urine samples.ConclusionsThe levels of urinary UBE2C cell-free RNA were significantly higher in BC samples than in normal and hematuria control samples. The higher levels of urinary UBE2C cell-free RNA in BC might reflect high expression in BC tissues. Therefore, urinary UBE2C cell-free RNA may be a valuable diagnostic marker for BC.
We performed gene expression profiling in bladder cancer patients to identify cancer-specific survival-related genes in muscle invasive bladder cancer (MIBC) patients. Sixty-two patients with MIBC were selected as the original cohort and another 118 MIBC patients were chosen as a validation cohort. The expression of USP18, DGCR2, and ZNF699 genes were measured and we analyzed the association between gene signatures and survival. USP18 and DGCR2, were significantly correlated to cancer-specific death (P=0.020, P=0.007, respectively). Cancer-specific survival in the low USP18 or DGCR2 expression group was significantly longer than the high expression group (P=0.018, P=0.006, respectively). In multivariate Cox regression analysis, a combination of USP18 and DGCR2 mRNA expression levels were significant risk factors for cancer-specific death (HR, 2.106; CI, 1.043-4.254, P=0.038). Overall survival and cancer-specific survival rates in the low-combination group were significantly longer than those in the high-expression group (P=0.001, both). In conclusion, decreased expressions of USP18 and DGCR2 were significantly associated with longer cancer-specific survival, and also the combination of two genes was correlated to a longer survival for MIBC patients. Thus, the combination of USP18 and DGCR2 expression was shown to be a reliable prognostic marker for cancer-specific survival in MIBC.Graphical Abstract
BackgroundThere is growing interest in developing new non-invasive diagnostic tools for bladder cancer (BC) that have better sensitivity and specificity than cystoscopy and cytology. This study examined the value of urinary cell-free nucleic acid (NA) as a diagnostic marker for BC.Material and methodsA total of 81 patients (74 BC and 7 normal controls) were used for a tissue set, and 212 patients (92 BC and 120 normal controls) were used as a urine set. Expression of tissue mRNA and urinary cell-free NAs was then examined.ResultsFour candidate genes were top-ranked in the tissue microarray. Expression levels of two of these (IQGAP3 and TOP2A) in BC tissue and urine samples from BC patients were significantly higher than those in samples from the control groups. Binary logistic regression analysis of cell-free NA levels in urine samples revealed that IQGAP3 was significantly associated with BC: PicoGreen-adjusted odds ratio (OR), 3.434; confidence interval (CI), 2.999–4.180; P<0.001; RiboGreen-adjusted OR, 2.242; CI, 1.793–2.840; P<0.001. Further analysis of IQGAP3 urinary cell-free NAs with respect to tumor invasiveness and grade also yielded a high AUC, suggesting that IQGAP3 can discriminate between BC patients and non-cancer patients with hematuria.ConclusionsLevels of IQGAP3 urinary cell-free NA in BC patients were significantly higher than those in normal controls or patients with hematuria. High levels of IQGAP3 urinary cell-free NA also reflected high expression in BC tissues. Therefore, IQGAP3 urinary cell-free NA may be a complementary diagnostic biomarker for BC.
The interaction between polyacrylamide (PAM) and SiO2 film was investigated in order to elucidate the removal polycrystalline silicon (poly Si) to SiO2 selectivity in poly isolation chemical mechanical planarization (CMP). The hydrophilic characteristics of poly Si and SiO2 were analyzed by the X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The surface of SiO2 is more hydrophilic than that of poly Si due to the siloxane (triple bond Si-O-Si triple bond) bonding. The adsorption behavior of PAM on poly Si and SiO2 film was determined by adsorption isotherms and force measurements using atomic force microscopy (AFM). Interaction between siloxane bonding of SiO2 film and the amine group along the backbone of PAM results in the adsorption of PAM on SiO2 film. Consequently, the passivation layer of PAM on the SiO2 film prevented abrasives from approaching the surface of SiO2 film, which led to suppression of the removal rate of SiO2 film from 82 to 12 A/min in poly isolation CMP process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.