Candida boidinii was selected as a γ-dodecelactone producer because of the highest production of γ-dodecelactone from 10-hydroxy-12(Z)-octadecenoic acid among the 11 yeast strains tested. Under the reaction conditions of pH 5.5 and 25 °C with 5 g/L 10-hydroxy-12(Z)-octadecenoic acid and 30 g/L cells, whole C. boidinii cells produced 2.1 g/L γ-dodecelactone from 5 g/L 10-hydroxy-12(Z)-octadecenoic acid after 6 h, with a conversion yield of 64% (mol/mol) and a volumetric productivity of 350 mg/L/h. The production of γ-dodecelactone from safflower oil was performed by lipase hydrolysis reaction and two-step whole-cell biotransformation using Stenotrophomonas nitritireducens and C. boidinii. γ-Dodecelactone at 1.88 g/L was produced from 7.5 g/L safflower oil via 5 g/L 10-hydroxy-12(Z)-octadecenoic acid intermediate by these reactions after 8 h of reaction time, with a volumetric productivity of 235 mg/L/h and a conversion yield of 25% (w/w). To the best of the authors' knowledge, this is the highest volumetric productivity and conversion yield reported to date for the production of γ-lactone from natural oils.
The double-site variant (C450S-N475K) L-arabinose isomerase (L-AI) from Geobacillus thermodenitrificans catalyzes the isomerization of D-galactose to D-tagatose, a functional sweetener. Using a substrate-docking homology model, the residues near to D-galactose O6 were identified as Met186, Phe280, and Ile371. Several variants obtained by site-directed mutagenesis of these three residues were analyzed, and a triple-site (F280N) variant enzyme exhibited the highest activity for D-galactose isomerization. The k cat/K m of the triple-site variant enzyme for D-galactose was 2.1-fold higher than for L-arabinose, whereas the k cat/K m of the double-site variant enzyme for L-arabinose was 43.9-fold higher than for D-galactose. These results suggest that the triple-site variant enzyme is a D-galactose isomerase. The conversion rate of D-galactose to D-tagatose by the triple-site variant enzyme was approximately 3-fold higher than that of the double-site variant enzyme for 30 min. However, the conversion yields of L-arabinose to L-ribulose by the triple-site and double-site variant enzymes were 10.6 and 16.0 % after 20 min, respectively. The triple-site variant enzyme exhibited increased specific activity, turnover number, catalytic efficiency, and conversion rate for D-galactose isomerization compared to the double-site variant enzyme. Therefore, the amino acid at position 280 determines the substrate specificity for D-galactose and L-arabinose, and the triple-site variant enzyme has the potential to produce D-tagatose on an industrial scale.
Recently, the Korean government announced a new development plan for a large-scale greenhouse complex in reclaimed lands. Wind environments of reclaimed land are entirely different from those of inland. Many standard books for ventilation design didn't include qualitative standard for natural ventilation. In this study, natural ventilation rates were analyzed to suggest standard for ventilation design of venlo type greenhouse built on reclaimed land. CFD (Computational Fluid Dynamics) simulation models were designed according to the number of spans, wind conditions and vent openings. The wind profile at a reclaimed land was designed using ESDU (Engineering Sciences Data Unit) code. Using the designed CFD simulation model, ventilation rates were computed using mass flow rate and tracer gas decay method. Additionally computed natural ventilation rates were evaluated by comparing with ventilation requirements. As a result of this study, ventilation rates were decreased with increasing of the number of spans. Ventilation rates were linearly increased with increasing of wind speed. When the wind speed was 1.0 m·s -1 , only side vent was open and wind direction was 45°, homogeneity of ventilation rate at 0∼1 m height is the worst. Finally, chart for computing natural ventilation rate was suggested. The chart was expected to be used for establishing standard of ventilation design.
In 2014, a new high-quality, pollination-constant, non-astringent persimmon (Diospyros kaki L. Thunb.) cultivar, 'Wonmi', a breeding of 'Fuyu' and 'Taishu' from 2005, was developed. 'Wonmi' fruit were harvested on October 8 in Yeongam, South Korea. The fruit are medium-sized (220 g on average), with a high amount of soluble solids (15.1 o Bx). The juicy flesh has a pleasant taste and crispy texture. The fruit shape is round oblate, and the skin color is orange with a graceful appearance. Physiological disorders, such as stylar-end or fine skin cracking, rarely occur in this cultivar (Registration No. 7724).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.