The habitat partitioning hypothesis provides a conceptual framework for explaining the maintenance of plant and animal diversity. Its central tenet assumes environmental conditions are spatially structured, and that this structure is reflected in species distributions through associations with different habitats. Studies confirming habitat partitioning effects have focused primarily on spatial distributions of plants and animals, with habitat partitioning hypothesis under explored for macrofungi. Here, we examined the sporocarps of macrofungi in a 5-ha forest dynamics plot in China. We used four different methods to define microhabitats for habitat partitioning analyses based on topography, understory light availability, plant community, or a combination of these factors, and analyzed the effect of microhabitat partitioning on epigeous macrofungal community. Our results showed that the characteristics of the macrofungal assemblages varied among the habitats. A total of 85 species examined were associated with one or more of the habitat types (85/125, 68%). The factors related to the sporocarp composition differed among the various microhabitats. Our findings suggest that different microhabitats favor occurrence of different macrofungal species, and sporocarps -environment relation varied among the different microhabitats at this temperate mountain forest locality. These findings shed new light to the biodiversity conservation in macrofungi in temperate deciduous broad-leaved forest and point to the potential importance of microhabitat partitioning for sporocarp formation.
The effects of environmental and dispersal processes on macrofungi community assembly remain unclear. Further, it is not well understood if community assembly differs for different functional guilds of macrofungi, e.g., soil and rotten-wood macrofungi. In this study, using 2433 macrofungi sporocarps belonging to 217 species located within a forest dynamics plot in temperate mountain forest (China), we examined the explanatory power of topography, spatial eigenvectors (representing unknown spatial processes, e.g., dispersal), plant community, and light availability for local spatial variation in the macrofungi community through variance partitioning and partial least squares path modeling. We found spatial eigenvectors and light as the most important factors for explaining species richness and composition of macrofungi. Light was negatively correlated with species richness of macrofungi. Furthermore, species richness and composition of soil macrofungi were best explained by light, and species richness and composition of rotten-wood macrofungi were best explained by spatial eigenvectors. Woody plant community structure was not an important factor for species richness and composition of macrofungi. Our findings suggest that spatial processes, perhaps dispersal limitation, and light availability were the most important factors affecting macrofungi community in temperate deciduous broad-leaved forest. Major differences in influencing factors between soil and rotten-wood macrofungi were observed, with light as the major driver for soil macrofungi and unknown spatial processes as the major driver for rotten-wood macrofungi. These findings shed new light to the processes shaping community assembly in macrofungi in temperate deciduous broad-leaved forest and point to the potential importance of both intrinsic dynamics, such as dispersal, and external forcing, such as forest dynamics, via its effect on light availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.