Osteosarcoma is the most common primary bone tumor in children and adolescents. Although combined therapy including surgery and multi-agent chemotherapy have resulted in great improvements in the overall survival of patients, chemoresistance remains an obstacle for the treatment of osteosarcoma. Molecular targets or effective agents that are actively involved in cell death including apoptosis, autophagy and necroptosis have been studied. We summarized how these agents (novel compounds, miRNAs, or proteins) regulate apoptotic, autophagic and necroptotic pathways; and discussed the current knowledge on the role of these new agents in chemotherapy resistance in osteosarcoma.
BackgroundVarious treatments of giant cell tumor of bone (GCTB) included in curettages and resections and with adjuvant are exerted, but the best treatment is controversial. The aim of the study was the identification of individual risk factors after various treatments in GCTB.MethodsA total of 179 patients treated for GCTB between 1998 and 2010 were concluded in the retrospective study. All patients were treated with intralesional curettage, extensive curettage, or wide resection. Mean follow-up was 60.2 ± 18.7 months (36~112 months). Age, gender, tumor location, Campanacci grade, soft tissue extension, pathological features, and surgical methods were performed to univariate Kaplan-Meier survival analysis and multivariate Cox regression analysis.ResultsThe local recurrence rates of intralesional curettage (41.9 %) and extensive curettage (19.0 %) were significantly higher than that of wide resection (7.7 %). The higher risk of local recurrence was found for soft tissue extension (hazard = 7.921, 95 % CI 1.107~56.671), compared with no statistical significances between gender, location, Campanacci grade, pathologic fracture, and local recurrences, which were shown by Kaplan-Meier analysis. However, recurrence-free survival (RFS) of patients younger than 30 was significantly lower than that of patients older than 30. The RFS of pathologic fracture patients with soft tissue extension was significantly lower than that of pathologic fracture patients without soft tissue extension. Multivariate Cox regression analysis indicated that the independent variable that contributed to recurrence-free survival was soft tissue extension and surgical methods. The RFS of extensive curettage had no statistically significant difference with wide resection and was significantly higher than that of intralesional curettage. Use of high-speed burring and bone cement significantly decreased the local recurrence rate.ConclusionsAge (below 30 years), gender, tumor location, Campanacci grade, and pathologic fracture have no statistically significant influence on local recurrences. Soft tissue extension and intralesional curettage of surgical methods increased the RFS. The results of the present study suggested that compared with curettage and wide section, treatment of GCTB by extensive curettage could provide the favorable local control and functional recovery.Electronic supplementary materialThe online version of this article (doi:10.1186/s12957-016-0871-z) contains supplementary material, which is available to authorized users.
Osteosarcoma (OS) is the most common pediatric malignant bone tumor, and occurrence of pulmonary metastasis generally causes a rapid and fatal outcome. Here we aimed to provide clues for exploring the mechanism of tumorigenesis and pulmonary metastasis for OS by comprehensive analysis of microRNA (miRNA), long non-coding RNA (lncRNA), and mRNA expression in primary OS and OS pulmonary metastasis. In this study, deep sequencing with samples from primary OS (n = 3), pulmonary metastatic OS (n = 3), and normal controls (n = 3) was conducted and differentially expressed miRNAs (DEmiRNAs), lncRNAs (DElncRNAs), and mRNAs (DEmRNAs) between primary OS and normal controls as well as pulmonary metastatic and primary OS were identified. A total of 65 DEmiRNAs, 233 DElncRNAs, and 1405 DEmRNAs were obtained between primary OS and normal controls; 48 DEmiRNAs, 50 DElncRNAs, and 307 DEmRNAs were obtained between pulmonary metastatic and primary OS. Then, the target DEmRNAs and DElncRNAs regulated by the same DEmiRNAs were searched and the OS tumorigenesis-related and OS pulmonary metastasis-related competing endogenous RNA (ceRNA) networks were constructed, respectively. Based on these ceRNA networks and Venn diagram analysis, we obtained 3 DEmiRNAs, 15 DElncRNAs, and 100 DEmRNAs, and eight target pairs including miR-223-5p/(CLSTN2, AC009951.1, LINC01705, AC090673.1), miR-378b/(ALX4, IGSF3, SULF1), and miR-323b-3p/TGFBR3 were involved in both tumorigenesis and pulmonary metastasis of OS. The TGF-β superfamily co-receptor TGFBR3, which is regulated by miR-323b-3p, acts as a tumor suppressor in OS tumorigenesis and acts as a tumor promoter in pulmonary metastatic OS via activation of the epithelial–mesenchymal transition (EMT) program.In conclusion, the OS transcriptome (miRNA, lncRNA, and mRNA) is dynamically regulated. These analyses might provide new clues to uncover the molecular mechanisms and signaling networks that contribute to OS progression, toward patient-tailored and novel-targeted treatments.
Small cell osteosarcoma (SCO) is a rare subtype of osteosarcoma characterized by highly aggressive progression and a poor prognosis. The miRNA and mRNA expression profiles of peripheral blood mononuclear cells (PBMCs) were obtained in 3 patients with SCO and 10 healthy individuals using high-throughput RNA-sequencing. We identified 37 dysregulated miRNAs and 1636 dysregulated mRNAs in patients with SCO compared to the healthy controls. Specifically, the 37 dysregulated miRNAs consisted of 27 up-regulated miRNAs and 10 down-regulated miRNAs; the 1636 dysregulated mRNAs consisted of 555 up-regulated mRNAs and 1081 down-regulated mRNAs. The target-genes of miRNAs were predicted, and 1334 negative correlations between miRNAs and mRNAs were used to construct an miRNA-mRNA regulatory network. Dysregulated genes were significantly enriched in pathways related to cancer, mTOR signaling and cell cycle signaling. Specifically, hsa-miR-26b-5p, hsa-miR-221-3p and hsa-miR-125b-2-3p were significantly dysregulated miRNAs and exhibited a high degree of connectivity with target genes. Overall, the expression of dysregulated genes in tumor tissues and peripheral blood samples of patients with SCO measured by quantitative real-time polymerase chain reaction corroborated with our bioinformatics analyses based on the expression profiles of PBMCs from patients with SCO. Thus, hsa-miR-26b-5p, hsa-miR-221-3p and hsa-miR-125b-2-3p may be involved in SCO tumorigenesis.
ObjectiveTo investigate the anti-tumor effects and the mechanism of the compound 13-chlorine-3, 15-dioxy-gibberellic acid methyl ester (GA-13315) in lung adenocarcinoma in vitro and in vivo.MethodsThe antiproliferative effect of GA-13313 on the A549 cell line was determined by MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide) assay. A xenograft model of A549 was established to evaluate the anti-tumor effect and histopathological examination was performed to assess the toxicity of GA-13315. Apoptosis was detected by TUNEL staining in tissues and flow cytometry in cells; activation of caspase-3, caspase-8 and caspase-9 was evaluated by immunohistochemical analysis; protein levels of Bcl-2-associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), caspase-4, activating transcription factor 4 (ATF4), glucose-regulated protein 78 (GRP78) and growth arrest and DNA damage-inducible gene 153 (GADD153) were determined by western blotting. Mitochondrial membrane potential (MMP) was measured by the JC-1 fluorescence probe.ResultsOur results showed that GA-13315 exhibited potent, dose- and time-dependent anti-proliferative activity, and the IC50 values were 37.43 ± 2.73, 28.08 ± 7.76 and 19.29 ± 7.61 μM at 24, 48, and 72 h, respectively. The xenograft experiment revealed that tumor weight and volume were significantly decreased after GA-13315 3 mg/kg and 9 mg/kg (P < 0.05) treatment, and GA-13315 had low toxicity in bone marrow, kidney and colon tissues. GA-13315 triggered remarkable apoptosis in A549 cells at the concentration of 25.6 μM and 32 μM (P < 0.05) and activated caspase-3, − 8 and − 9. Moreover, GA-13315 induced apoptosis through the mitochondrial apoptosis pathway by elevating the Bax/Bcl-2 ratio, releasing cytochrome c and activating caspase-9 in A549 cells. In the endoplasmic reticulum apoptosis pathway, the levels of caspase-4, ATF4, GRP78 and GADD153 were markedly upregulated.ConclusionsThis study suggests that GA-13315 can be considered as a promising chemotherapeutic agent with anticancer activity in treatment of lung cancer in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.