The alkylphenol breakdown products of alkylphenol ethoxylates have been shown in in vitro studies to be weakly estrogenic, but few in vivo data address this issue in mammals. Because estrogens have been found to be most potent during developmental/perinatal exposures, this study maximized developmental exposure to nonylphenol (NP) by treating 3.5 generations of Sprague-Dawley rats to NP in diet at 200, 650, and 2000 ppm to determine the range and severity of any toxicity. Dose rate was higher for younger rats; calculated dose ranges were 9-35, 30-100, and 100-350 mg/kg/d for the low (200NP), middle (650NP), and high (2000NP) dose groups, respectively. There were adult (F0, F1, F2) and postnatal day (pnd) 21 (F1, F2, F3) necropsies; the oldest F3 rats were killed on pnd 55-58. Body weight gain was reduced by 8-10% in the 650NP and 2000NP groups. Vaginal opening was accelerated by approximately 2 days (650NP) and approximately 6 days (2000NP) in F1, F2, and F3 generations. Uterine weights at pnd 21 were increased in 650NP (14%) and 2000NP (50%) F1 females, but not in other generations. Testis descent, anogenital distance, and preputial separation were not consistently changed. No consistent changes were seen in pup number, weight or viability, litter indices, or other functional reproductive measures. Relative ovary weight in F2 adults was decreased at 650NP and 2000NP by 12%; relative ovary was unchanged in other generations. Follicle counts were unchanged in F2 adults. Sperm indices, including CASA measures, were unchanged in F0 and F1 males. In F2 rats, epididymal sperm density was reduced by 8% and 13% at 650NP and 2000NP, respectively. Testicular spermatid count was reduced by 13% in 2000NP F2 males; testis and epididymis weights were unchanged. Erosion of gastric and duodenal mucosa was monitored grossly and microscopically, and never found. Kidney weights were increased in 650NP and 2000NP males, and renal medullary tubular dilatation and cyst formation were noted in all generations of males, and often at the lowest dose tested. These data show that NP had limited effects on the reproductive system in the presence of measurable nephrotoxicity. The F2 sperm effects are either statistical/biological "noise," or imply heretofore unknown pharmacokinetics or toxicodynamics. These sperm data should be interpreted cautiously until the findings are repeated.
BackgroundThe uteruses of most dairy cattle are easily infected by bacteria, especially gram-negative bacteria, following parturition. Macrophages are important cells of the immune system and play a critical role in the inflammatory response. In addition, cortisol levels become significantly increased due to the stress of parturition in dairy cattle, and cortisol is among the most widely used and effective therapies for many inflammatory diseases. In this study, we assessed the anti-inflammatory effects and potential molecular mechanisms of cortisol using a Lipopolysaccharide (LPS)-induced RAW264.7 macrophage cell line.ResultsCortisol significantly suppressed the production of prostaglandin E2 (PGE2) and decreased the gene and protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner. Moreover, cortisol inhibited the mRNA expression of pro-inflammatory cytokines including tumor necrosis factor alpha (TNFα), interleukin-1β (IL-1β), and interleukin-6 (IL-6) and decreased IL-1β secretion in an LPS-treated RAW264.7 macrophage cell line. Moreover, we found that cortisol suppressed nuclear factor-kappa B (NF-κB) signaling in RAW264.7 macrophages stimulated with LPS. This suppression was mediated by the inhibition of IκBα degradation and NF-κB p65 phosphorylation. In addition, cortisol also suppressed the phosphorylation of mitogen-activated protein kinases (MAPK) such as extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase/stress-activated protein kinase (JNK).ConclusionsThese results suggest that high cortisol levels can attenuate LPS-induced inflammatory responses in the RAW264.7 macrophage cell line by regulating the NF-κB and MAPK signaling pathways.
Making Epididymal Sperm Counts (Yefan Wang, TherImmune Research Corporation, Gaithersberg, Maryland). Epididymal sperm counts are a widely used, simple and sensitive method of assessing the effects of male reproductive toxicants on the epididymal and/or testicular site of action. After careful dissection of the tissues and further processing, the sperm suspensions are counted using a hemacytometer and analyzed for effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.