Abstract-In this paper, we consider massive multiple-input multiple-output (MIMO) systems for both downlink and uplink scenarios, where three radio units (RUs) connected via one digital unit (DU) support multiple user equipments (UEs) at the cell-boundary through the same radio resource, i.e., the same time-frequency slot. For downlink transmitter options, the study considers zero-forcing (ZF) and maximum ratio transmission (MRT), while for uplink receiver options it considers ZF and maximum ratio combining (MRC). For the sum rate of each of these, we derive simple closed-form formulas. In the simple but practically relevant case where uniform power is allocated to all downlink data streams, we observe that, for the downlink, vector normalization is better for ZF while matrix normalization is better for MRT. For a given antenna and user configuration, we also derive analytically the signal-to-noise-ratio (SNR) level below which MRC should be used instead of ZF. Numerical simulations confirm our analytical results.
This paper presents novel Ultrareliable and lowlatency communication (URLLC) techniques for URLLC services, such as Tactile Internet services. Among typical use-cases of URLLC services are tele-operation, immersive virtual reality, cooperative automated driving, and so on. In such URLLC services, new kinds of traffic such as haptic information including kinesthetic information and tactile information need to be delivered in addition to high-quality video and audio traffic in traditional multimedia services. Further, such a variety of traffic has various characteristics in terms of packet sizes and data rates with a variety of requirements of latency and reliability. Furthermore, some traffic may occur in a sporadic manner but require reliable delivery of packets of medium to large sizes within a low latency, which is not supported by current state-of-the-art wireless communication systems and is very challenging for future wireless communication systems. Thus, to meet such a variety of tight traffic requirements in a wireless communication system, novel technologies from the physical layer to the network layer need to be devised. In this paper, some novel physical layer technologies such as waveform multiplexing, multiple access scheme, channel code design, synchronization, and full-duplex transmission for spectrally-efficient URLLC are introduced. In addition, a novel performance evaluation approach, which combines a ray-tracing tool and system-level simulation, is suggested for evaluating the performance of the proposed schemes. Simulation results show the feasibility of the proposed schemes providing realistic URLLC services in realistic geographical environments, which encourages further efforts to substantiate the proposed work 1 .
Abstract-In this paper, we investigate a radio frequency (RF) lens-embedded massive multiple-input multiple-output (MIMO) system and evaluate the system performance of limited feedback by utilizing a technique for generating a suitable codebook for the system. We fabricate an RF lens that operates on a 77 GHz (mmWave) band. Experimental results show a proper value of amplitude gain and an appropriate focusing property. In addition, using a simple numerical technique-beam propagation method (BPM)-we estimate the power profile of the RF lens and verify its accordance with experimental results. We also design a codebook-multi-variance codebook quantization (MVCQ)-for limited feedback by considering the characteristics of the RF lens antenna for massive MIMO systems. Numerical results confirm that the proposed system shows significant performance enhancement over a conventional massive MIMO system without an RF lens.Index Terms-Massive MIMO, RF lens antenna, beam propagation method, limited channel feedback, multi-variance codebook quantization method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.