We present a general method to quantify both bipartite and multipartite entanglement in a device-independent manner, meaning that we put a lower bound on the amount of entanglement present in a system based on the observed data only but independent of any quantum description of the employed devices. Some of the bounds we obtain, such as for the Clauser-Horne-Shimony-Holt Bell inequality or the Svetlichny inequality, are shown to be tight. Besides, device-independent entanglement quantification can serve as a basis for numerous tasks. We show in particular that our method provides a rigorous way to construct dimension witnesses, gives new insights into the question whether bound entangled states can violate a Bell inequality, and can be used to construct device-independent entanglement witnesses involving an arbitrary number of parties.
We consider the problem of determining whether genuine multipartite entanglement was produced in an experiment, without relying on a characterization of the systems observed or of the measurements performed. We present an n-partite inequality that is satisfied by all correlations produced by measurements on biseparable quantum states, but which can be violated by n-partite entangled states, such as Greenberger-Horne-Zeilinger states. In contrast to traditional entanglement witnesses, the violation of this inequality implies that the state is not biseparable independently of the Hilbert space dimension and of the measured operators. Violation of this inequality does not imply, however, genuine multipartite nonlocality. We show more generically how the problem of identifying genuine tripartite entanglement in a device-independent way can be addressed through semidefinite programming.
In 1960, the mathematician Ernst Specker described a simple example of nonclassical correlations, the counterintuitive features of which he dramatized using a parable about a seer who sets an impossible prediction task to his daughter's suitors. We revisit this example here, using it as an entrée to three central concepts in quantum foundations: contextuality, Bell-nonlocality, and complementarity. Specifically, we show that Specker's parable offers a narrative thread that weaves together a large number of results, including: the impossibility of measurement-noncontextual and outcome-deterministic ontological models of quantum theory (the 1967 Kochen-Specker theorem), in particular the recent state-specific pentagram proof of Klyachko; the impossibility of Bell-local models of quantum theory (Bell's theorem), especially the proofs by Mermin and Hardy and extensions thereof; the impossibility of a preparation-noncontextual ontological model of quantum theory; and the existence of triples of positive operator valued measures (POVMs) that can be measured jointly pairwise but not triplewise. Along the way, several novel results are presented, including: a generalization of a theorem by Fine connecting the existence of a joint distribution over outcomes of counterfactual measurements to the existence of a measurement-noncontextual and outcome-deterministic ontological model; a generalization of Klyachko's proof of the Kochen-Specker theorem from pentagrams to a family of star polygons; a proof of the Kochen-Specker theorem in the style of Hardy's proof of Bell's theorem (i.e., one that makes use of the failure of the transitivity of implication for counterfactual statements); a categorization of contextual and Bell-nonlocal correlations in terms of frustrated networks; a derivation of a new inequality testing preparation noncontextuality; and lastly, some novel results on the joint measurability of POVMs and the question of whether these can be modeled noncontextually. Finally, we emphasize that Specker's parable of the over-protective seer provides a novel type of foil to quantum theory, challenging us to explain why the particular sort of contextuality and complementarity embodied therein does not arise in a quantum world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.