Taxonomic positions of four Gram-negative bacterial strains, which were isolated from larvae of two insects in Jeju, Republic of Korea, were determined by a polyphasic approach. Strains CWB-B4, CWB-B41 and CWB-B43 were recovered from larvae of Protaetia brevitarsis seulensis, whereas strain BWR-B9T was from larvae of Allomyrina dichotoma. All the isolates grew at 10–37 °C, at pH 5.0–9.0 and in the presence of 4 % (w/v) NaCl. The 16S rRNA gene phylogeny showed that the four isolates formed two distinct sublines within the order Enterobacteriales and closely associated with members of the genus Jinshanibacter . The first group represented by strain CWB-B4 formed a tight cluster with Jinshanibacter xujianqingii CF-1111T (99.3 % sequence similarity), whereas strain BWR-B9T was most closely related to Jinshanibacter zhutongyuii CF-458T (99.5 % sequence similarity). The 92 core gene analysis showed that the isolates belonged to the family Budviciaceae and supported the clustering shown in 16S rRNA gene phylogeny. The genomic DNA G+C content of the isolates was 45.2 mol%. A combination of overall genomic relatedness and phenotypic distinctness supported that three isolates from Protaetia brevitarsis seulensis are different strains of Jinshanibacter xujianqingii , whereas one isolate from Allomyrina dichotoma represents a new species of the genus Jinshanibacter . On the basis of results obtained here, Jinshanibacter allomyrinae sp. nov. (type strain BWR-B9T=KACC 22153T=NBRC 114879T) and Insectihabitans xujianqingii gen. nov., comb. nov. are proposed, with the emended descriptions of the genera Jinshanibacter , Limnobaculum and Pragia .
Two enterobacterial strains, designated YMB-R21T and YMB-R22, were isolated from larvae of mealworm Tenebrio molitor L. and examined for their taxonomic characteristics. A 16S rRNA gene-based neighbour-joining tree showed that the two isolates formed two distinct sublineages within the family Enterobacteriaceae and were separated from other genera of the family. The isolates showed 16S rRNA gene sequence similarity of 98.9 % to each other and ≤96.5 % to members of the order Enterobacteriales . The phylogenomic analysis based on 92 singly-copy core genes showed that the two isolates belonged to the family Enterobacteriaceae and formed a distinct sublineage at a position located remotely from the genera of the family. The loosely associated members were the type strain of Erwinia teleogrylli and members of the genus Shimwellia . Average nucleotide identity and digital DNA–DNA hybridization values showed that the isolates represented members of a novel species in the family Enterobacteriaceae . The values of amino acid identity between the two isolates and the closest relatives were 74.5–75.0 % with the type strain of E. teleogrylli and 74.5–74.8 % with the type strains of two Shimwellia species, while E. teleogrylli showed the amino acid identity values of 76.3–76.5 % with two Shimwellia species. Based on the results obtained here, we propose a new genus Tenebrionicola with the description of Tenebrionicola larvae sp. nov. (type strain YMB-R21T=KCTC 82597T=CCM 9152T and strain YMB-R22=KCTC 82598=CCM 9153), with the transfer of Erwinia teleogrylli Liu et al. 2016 to a new genus Entomohabitans as Entomohabitans teleogrylli comb. nov. (type strain SCU-B244T=CGMCC 1.12772T=DSM 28222T=KCTC 42022T).
The taxonomic positions of two novel strains isolated from larvae of an insect (Allomyrina dichotoma) collected in Jeju, Republic of Korea, were determined by a polyphasic approach. Strain BWB3-3T was closely related to the type strain of Vagococcus salmoninarum , having 97.2 % 16S rRNA gene sequence similarity, whereas strain BWM-S5T formed an independent cluster within the genus Enterococcus in the 16S rRNA gene phylogeny and the closest relative was the type strain of Enterococcus canis (98.1 % sequence similarity). The core gene analysis supported the phylogenetic positions of the isolates revealed by 16S rRNA gene phylogeny. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strain BWB3-3T and the type strain of V. salmoninarum were 73.2 and 20.0 %, respectively, whereas strain BWM-S5 T showed an ANI value of 70.9 % with the type strain of Enterococcus canis . The dDDH values between strain BWM-S5T and all the type strains of Enterococcus species were ≤25.1 %. On the basis of the results obtained here, the two isolates are considered to constitute two novel species of the family Enterococcaceae , for which the names Vagococcus allomyrineae sp. nov. and Enterococcus larvae sp. nov. are proposed, with the type strains BWB3-3T (=KCTC 43277T=CCM 9080T) and BWM-S5T (=KACC 22156T=CCM 9075T), respectively.
A Gram-reaction-positive, strictly aerobic, non-sporulating, non-motile, rod-shaped bacterium, designated YC3-14T, was isolated from pieces of stalagmite collected in a lava cave in Jeju, Republic of Korea. Cells showed growth at 15–35 °C, pH 6.0–9.0 and with 0–3 % (w/v) NaCl. Colonies of the cells were circular, smooth, convex and cream in colour. A 16S rRNA gene-based neighbour-joining tree indicated that the organism belonged to the genus Aeromicrobium and formed a sublineage between an Aeromicrobium endophyticum–Aeromicrobium fastidiosum cluster and an Aeromicrobium yanjiei–Aeromicrobium chenweiae cluster. The highest 16S rRNA gene similarity values of strain YC3-14T were with the type strains of A. yanjiei (99.2 %), A. endophyticum (99.1 %), A. fastidiosum (98.8 %), A. ginsengisoli (98.8 %) and A . chenweiae (98.7 %). The cell-wall peptidoglycan contained ll-diaminopimelic acid as the diagnostic diamino acid. The major menaquinone was MK-9(H4). The predominant fatty acids were C18 : 0.10-methyl, C18 : 1 ω9c and C16 : 0. The polar lipids comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, an unidentified phospholipid and two unidentified lipids. The G+C content of the genome DNA was 69.9 mol%. These chemotaxonomic features of the isolate were typical for the genus Aeromicrobium . The genome-based phylogeny showed the same tree topology as the 16S rRNA gene phylogeny. The average nucleotide identity (≤84.5 %) and digital DNA–DNA hybridization (≤27.5 %) values supported that the isolate belongs to a novel species of the genus Aeromicrobium . On the basis of data obtained by a polyphasic approach, strain YC3-14T (=KCTC 49469T=NBRC 114653T) represents a novel species of the genus Aeromicrobium , for which the name Aeromicrobium stalagmiti sp. nov. is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.