Current spikes after collision: Analysis of current transients arising from impacts between the nanoparticles and an electrode surface (see picture) can be used to detect, identify, and determine the size of silver nanoparticles. This provides an exciting new strategy for the characterization of metal nanoparticles for analytical and environmental monitoring applications.
Gold nanoparticles (AuNPs) in aqueous 0.10 M HCl are shown to be electroactive at oxidising potentials greater than 1.0 V (vs. Ag/AgCl) by means of voltammetric monitoring of AuNP-electrode collisions. The method promises the use of anodic particle coulometry for the detection and characterisation of the AuNPs.
A one-step electrochemical approach to the synthesis of highly dispersed Pt nanoparticles on graphene has been proposed. The resultant Pt NPs@G nanocomposite shows higher electrocatalytic activity and long-term stability towards methanol electrooxidation than the Pt NPs@Vulcan.
A chip-based approach for electrochemical characterization and detection of microsomes and exosomes based on direct electro-oxidation of metal nanoparticles (MNPs) that specifically recognize surface markers of these vesicles is reported. It is found that exosomes and microsomes derived from prostate cancer cells can be identified by their surface proteins EpCAM and PSMA, suggesting the potential of exosomes and microsomes for use as diagnostic biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.