In this work we report a microfluidic platform capable of trapping and concentrating a trace amount of DNA molecules efficiently. Our strategy invokes nonlinear electro-osmotic flow induced by charge polarization under high-frequency ac fields. With the asymmetric quadrupole electrode design, a unique converging flow structure can be created for generating focusing effects on DNA molecules. This focusing in turn transforms into a robust funnel that can collect DNA molecules distantly from the bulk and pack them into a compact cone with the aid of short-range dipole-induced self-attraction and dielectrophoresis. Our results reveal that not only can DNA molecules be concentrated within just a few seconds, but also they can be focused into threads of 1 mm in length, demonstrating the superfast and long-range trapping capability of this funnel. In addition, pico M DNA solutions can be concentrated with several decades of enhancement without any continuous feeding. Alternating concentration and release of DNA molecules is also illustrated, which has potentials in concentrating and transporting biomolecules in a continuous fashion using microdevices.
Two major concerns in the design and fabrication of microfluidic biochips are protein binding on the channel surface and protein denaturing during device assembly. In this paper, we describe new methods to solve these problems. A "fishbone" microvalve design based on the concept of superhydrophobicity was developed to replace the capillary valve in applications where the chip surface requires protein blocking to prevent nonspecific binding. Our experimental results show that the valve functions well in a CD-like ELISA device. The packaging of biochips containing pre-loaded proteins is also a challenging task since conventional sealing methods often require the use of high temperatures, electric voltages, or organic solvents that are detrimental to the protein activity. Using CO2 gas to enhance the diffusion of polymer molecules near the device surface can result in good bonding at low temperatures and low pressure. This bonding method has little influence on the activity of the pre-loaded proteins after bonding.
Microalgae have been one of the important sources for biofuel production owing to their competitive advantages such as no need to tap into the global food supply chain, higher energy density, and absorbing carbon dioxide to mitigate global warming. One of the key factors to ensure successful biofuel production is that it requires not only bioprospecting of the microalgae with high lipid content, high growth rate and tolerance to environmental parameters but also on-site monitoring of the cultivation process and optimization of the culturing conditions. However, as the conventional techniques usually involve in complicated procedures, or are time-consuming or labor intensive, microfluidics technology offers an attractive alternative to resolve these issues. In this review, applications of microfluidics to bioprospecting in microalgae biotechnology were discussed such as cell identification, cell sorting/screening, cell culturing and cell disruption. In addition, utilization of microalgae in micro-sized fuel cells and microfluidic platforms for biosensing was addressed. This review reports the recent studies and offers a look into how microfluidics is exploited to tackle the issues encountered in the microalgae biotechnology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.