CAP has good sensitivity and specificity for detecting hepatic steatosis; however, based on a meta-analysis, CAP was limited in their accuracy of steatosis, which precluded widespread use in clinical practice.
Tumor‐infiltrating immune cells play a crucial role in tumor progression and response to treatment. However, the limited studies on infiltrating immune cells have shown inconsistent and even controversial results for osteosarcoma (OS). In addition, the dynamic changes of infiltrating immune cells after neoadjuvant chemotherapy are largely unknown. We downloaded the RNA expression matrix and clinical information of 80 OS patients from the TARGET database. CIBERSORT was used to evaluate the proportion of 22 immune cell types in patients based on gene expression data. M2 macrophages were found to be the most abundant immune cell type and were associated with improved survival in OS. Another cohort of pretreated OS samples was evaluated by immunohistochemistry to validate the results from CIBERSORT analysis. Matched biopsy and surgical samples from 27 patients were collected to investigate the dynamic change of immune cells and factors before and after neoadjuvant chemotherapy. Neoadjuvant chemotherapy was associated with increased densities of CD3+ T cells, CD8+ T cells, Ki67 + CD8+ T cells and PD‐L1+ immune cells. Moreover, HLA‐DR‐CD33+ myeloid‐derived suppressive cells (MDSC) were decreased after treatment. We determined that the application of chemotherapy may activate the local immune status and convert OS into an immune “hot” tumor. These findings provide rationale for investigating the schedule of immunotherapy treatment in OS patients in future clinical trials.
ObjectivesTo perform a meta-analysis assessing the ability of shear wave elastography (SWE) to identify malignant breast masses.MethodsPubMed, the Cochrane Library, and the ISI Web of Knowledge were searched for studies evaluating the accuracy of SWE for identifying malignant breast masses. The diagnostic accuracy of SWE was evaluated according to sensitivity, specificity, and hierarchical summary receiver operating characteristic (HSROC) curves. An analysis was also performed according to the SWE mode used: supersonic shear imaging (SSI) and the acoustic radiation force impulse (ARFI) technique. The clinical utility of SWE for identifying malignant breast masses was evaluated using analysis of Fagan plot.ResultsA total of 9 studies, including 1888 women and 2000 breast masses, were analyzed. Summary sensitivities and specificities were 0.91 (95% confidence interval [CI], 0.88–0.94) and 0.82 (95% CI, 0.75–0.87) by SSI and 0.89 (95% CI, 0.81–0.94) and 0.91 (95% CI, 0.84–0.95) by ARFI, respectively. The HSROCs for SSI and ARFI were 0.92 (95% CI, 0.90–0.94) and 0.96 (95% CI, 0.93–0.97), respectively. SSI and ARFI were both very informative, with probabilities of 83% and 91%, respectively, for correctly differentiating between benign and malignant breast masses following a “positive” measurement (over the threshold value) and probabilities of disease as low as 10% and 11%, respectively, following a “negative” measurement (below the threshold value) when the pre-test probability was 50%.ConclusionsSWE could be used as a good identification tool for the classification of breast masses.
Hepatitis B surface antigen (HBsAg) seropositivity is an important risk factor for hepatocellular carcinoma (HCC), and HBsAg-transgenic mice have been reported to spontaneously develop HCC. The major histocompatibility complex class I-related molecules A and B (MICA and MICB) are NKG2D ligands that play important roles in tumor immune surveillance. In the present study, we found that HBsAg overexpression in HepG2 cells led to upregulation of 133 and downregulation of 9 microRNAs (miRNAs). Interestingly, several HBsAg-induced miRNAs repressed the expression of MICA and MICB via targeting their 3'-untranslated regions. In addition, the expression of MICA and MICB was significantly reduced upon HBsAg overexpression, which was partially restored by inhibiting the activities of HBsAg-induced miRNAs. Moreover, HBsAg-overexpressing HCC cells exhibited reduced sensitivity to natural killer cell-mediated cytolysis. Taken together, our data suggest that HBsAg supresses the expression of MICA and MICB via induction of cellular miRNAs, thereby preventing NKG2D-mediated elimination of HCC cells.
Background: Osteosarcoma (OSA), the most common primary bone malignancy in children and adolescents, is prone to metastases and unfavorable prognosis. Owing to its strong genomic heterogeneity, traditional chemotherapy, or targeted immunotherapy has not effectively improved the related overall survival for decades. Since the landscape of the OSA tumor immune microenvironment is scarcely known, despite it playing a crucial role in predicting clinical outcomes and therapeutic efficacies, we aimed to elucidate its molecular characteristics. Methods: The immune signature of 101 OSA samples was explored using transcriptome profiling and clinical characteristics retrieved from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) program. Correlations between the prognostic immune markers and their clinical chemotherapy responses were assessed and verified based on 45 OSA primary tumors. Findings: We identified the heterogeneity underlying tumor immune signature in OSA, and found CD4+ T cells and macrophage markers CD4/IFNGR2/CD68 to be feasible prognostic factors, exerting significantly positive correlation with each other. Specifically, CSF1R, which plays an essential role in the regulation of proliferation and differentiation of macrophages, was found to be a specific signature associated with CD4/CD68, with improved OSA clinical outcomes. Interpretation: The immune landscape based on CD4/CD68/CSF1R gene signatures showed considerable promise for prognostic and therapeutic stratification in OSA patients. A specific immune signature for OSA, abundantly consisting of Th1-polarized CD4+ T cells and CSF1R-related CD68+ macrophages, may improve the predictive efficacy of chemotherapy and improve prognosis in patients with OSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.