BackgroundIntrahepatic cholangiocarcinoma (ICC) is a highly mortal malignancy with limited therapeutic options. Immunotherapies targeting PD-1/PD-L1 pathway represent a promising treatment for ICC. However, PD-L1 expression and microsatellite instability are not common in ICC. This study aimed to investigate whether HHLA2, a newly identified B7 family immune checkpoint for T cells, could be a therapeutic target next to PD-L1 in ICC.MethodsExpression levels of PD-L1 and HHLA2 as well as infiltrations of CD3+, CD8+, CD4 + Foxp3+, CD68+, CD163+ and CD20+ cells were evaluated by immunohistochemistry in 153 resected ICC samples. Comprehensive comparisons were made between PD-L1 and HHLA2 in terms of the expression rates, clinicopathological features and infiltrations of different immune cells. The expression level and prognostic significance of HHLA2 were further validated in an independent cohort.ResultsExpression of HHLA2 is more frequent than PD-L1 in ICC (49.0% vs 28.1%). Co-expression of both immune checkpoints was infrequent (13.1%) and 50% PD-L1 negative cases were with elevated HHLA2. HHLA2 overexpression was associated with sparser CD3+ tumor infiltrating lymphocytes (TILs), CD8+ TILs and a higher CD4 + Foxp3+/CD8+ TIL ratio, whereas PD-L1 expression was associated with prominent T cells and CD163+ tumor associated macrophages infiltrations. PD-L1 failed to stratify overall survival (OS) but HHLA2 was identified as an independent prognostic indicator for OS in two independent cohorts.ConclusionsCompared with PD-L1, HHLA2 is more prevalent and possesses more explicit prognostic significance, which confer the rationale for HHLA2 as a potential immunotherapeutic target next to PD-L1 for ICC patients.Electronic supplementary materialThe online version of this article (10.1186/s40425-019-0554-8) contains supplementary material, which is available to authorized users.
Background:Aberrant expression of interleukin-35 (IL-35) has been implicated in dampening antitumour immunity. The aim of this study was to explore the prognostic significance of IL-35 expression in patients with hepatocellular carcinoma (HCC) following curative resection. Furthermore, we aimed to formulate an effective prognostic nomogram for HCC after hepatectomy.Methods:Immunohistochemistry was applied to explore IL-35 expression as well as CD39+Foxp3+ and Foxp3+ regulatory T cell (Treg) infiltration in tissue microarrays in primary cohort comprising 210 randomly selected HCC patients who underwent curative resection. The results were further verified in an independent validation cohort of 138 HCC patients.Results:Patients with higher expression of IL-35 are more likely to suffer postoperative recurrence. Interleukin-35 was also identified as an independent prognostic factor for recurrence free survival in multivariate analysis. No correlation was detected between IL-35 expression and Foxp3+ Treg infiltration, whereas significant positive correlation was found between IL-35 expression and CD39+Foxp3+ Treg infiltration. In addition, CD39+Foxp3+ Treg infiltration was also an independent predictor for postoperative recurrence. The nomogram comprising tumour size, tumour vascular invasion, IL-35 and CD39+Foxp3+ Tregs had better predictive accuracy when compared with BCLC stage for RFS. These results were further validated in the validation cohort.Conclusions:Our data suggest for the first time that IL-35 expression correlates with HCC aggressiveness and emerged as a novel independent prognostic factor for recurrence, thus conferring the rationale to develop a novel therapy of targeting IL-35. Furthermore, IL-35 should be incorporated into nomogram to generate a more accurate predictive model.
BackgroundRegulatory T (Treg) cells play a negative role in anti-tumor immunity against triple-negative breast cancer, so it is of great significance to find the potential therapeutic target of Treg cells.MethodsFirst, Annexin A1 (ANXA1) expression and survival of patients with breast cancer were analyzed using TCGA data. Then plasma ANXA1 levels in patients with malignant and benign breast tumors were detected by ELISA. Next, the effect of ANXA1 on Treg cells was studied through suppressive assays, and how ANXA1 regulates the function of Treg cells was detected by RNA sequencing. Finally, the in vivo experiment in balb/c mice was conducted to test whether the ANXA1 blocker Boc1 could shrink tumors and affect the function of Treg cells.ResultsOur data suggest that ANXA1 expression is associated with lower survival and a higher risk of breast malignancy. Suppressive assays show that ANXA1 can enhance the inhibition function of Treg cells. RNA-Sequencing results indicate that Boc1 could reduce the expression of granzyme A mRNA in Treg cells. Animal experiments have been done to show that Boc1 can reduce tumor size and down regulate Treg cell function.ConclusionsANXA1 can enhance the function of Treg cells and reduce the survival rate of patients with breast cancer. Targeting ANXA1 can reduce Treg cell function and shrink breast tumors.
Supplemental Digital Content is available in the text
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.