Since the development of renewable power generation, Sub/Super-Synchronous Control Interac-tion (SSCI), has attracted wide attention. Sub/super-synchronous oscillation (SSO) belongs to the category of small signal stability, and its characteristics are closely related to the operation mode and controller parameters in power grid. The operation mode of renewable power system changes frequently, a method to construct controller parameter stability region (PSR) is proposed for online assessment of the matching degree of controller parameters in power grid under current operation mode. Based on Gerschgorin disk theorem (GDT), eigenvalue distribution range of the system state matrix is estimated, thus the feasible value set of the controller parameter is deduced through small signal stability criterion. The stability margin evaluation index is proposed for guiding the prevention and control of SSO. Specifically, the preconditions of the application of the GDT on the PSR construction are discussed, and a construction method of transition matrix is proposed for the PSR construction. Furthermore, to reduce the conservativeness of PSR, an extension method for PSR is given. Finally, the validity of the proposed method is verified by a realistic benchmark. The efficiency of the proposed method is highlighted by comparing with the point-wise eigenvalue calculation of the state matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.