Coronavirus disease 2019 (COVID-19) was first identified in Wuhan, China, in December 2019. Although previous studies have described the clinical aspects of COVID-19, few studies have focused on the early detection of severe COVID-19. Therefore, this study aimed to identify the predictors of severe COVID-19 and to compare clinical features between patients with severe COVID-19 and those with less severe COVID-19. Patients admitted to designated hospital in the Henan Province of China who were either discharged or died prior to February 15, 2020 were enrolled retrospectively. Additionally, patients who underwent at least one of the following treatments were assigned to the severe group: continuous renal replacement therapy, high-flow oxygen absorption, noninvasive and invasive mechanical ventilation, or extracorporeal membrane oxygenation. The remaining patients were assigned to the non-severe group. Demographic information, initial symptoms, and first visit examination results were collected from the electronic medical records and compared between the groups. Multivariate logistic regression analysis was performed to determine the predictors of severe COVID-19. A receiver operating characteristic curve was used to identify a threshold for each predictor. Altogether,104 patients were enrolled in our study with 30 and 74 patients in the severe and non-severe groups, respectively. Multivariate logistic analysis indicated that patients aged �63 years (odds ratio = 41.0; 95% CI: 2.8, 592.4), with an absolute lymphocyte value of �1.02×10 9 /L (odds ratio = 6.1; 95% CI = 1.5, 25.2) and a C-reactive protein level of �65.08mg/L (odds ratio = 8.9; 95% CI = 1.0, 74.2) were at a higher risk of severe illness. Thus, our results could be helpful in the early detection of patients at risk for severe illness, enabling the implementation of effective interventions and likely lowering the morbidity of COVID-19 patients.
With the increasing penetration of photovoltaics in distribution networks, the adaptability of distribution network under uncertainties needs to be considered in the planning of distribution systems. In this paper, the interval arithmetic and affine arithmetic are applied to deal with uncertainties, and an affine arithmetic based bi-level multi-objective joint planning model is built, which can obtain the planning schemes with low constraint-violation risk, high reliability and strong adaptability. On this basis, a bi-level multi-objective solution methodology using affine arithmetic based non-dominated sorting genetic algorithm II is proposed, and the planning schemes that simultaneously meet economy and adaptability goals under uncertainties can be obtained. To further eliminate bad solutions and improve the solution qualities, an affine arithmetic based dominance relation weakening criterion and a deviation distance based modification method are proposed. A 24-bus test system and a 10 kV distribution system of China are used for case studies. Different uncertainty levels are compared, and a sensitivity analysis of key parameters is conducted to explore their impacts on the final planning schemes. The simulation results verify the advantages of the proposed affine arithmetic based planning method.
Real-Time Pricing (RTP) is proposed as an effective Demand-Side Management (DSM) to adjust the load curve in order to achieve the peak load shifting. At the same time, the RTP mechanism can also raise the revenue of the supply-side and reduce the electricity expenses of consumers to achieve a win-win situation. In this paper, a real-time pricing algorithm based on price elasticity theory is proposed to analyze the energy consumption and the response of the consumers in smart grid structure. We consider a smart grid equipped with smart meters and two-way communication system. By using real data to simulate the proposed model, some characteristics of RTP are summarized as follows: 1) Under the condition of the real data, the adjustment of load curve and reducing the expenses of consumers is obviously. But the profit of power supplier is difficult to ensure. If we balance the profits of both sides, the supplier and consumers, the profits of both sides and the adjustment of load curve will be relatively limited. 2) If assuming the response degree of consumers to real-time prices is high enough, the RTP mechanism can achieve the expected effect. 3, If the cost of supply-side (day-ahead price) fluctuates dramatically, the profits of both sides can be ensured to achieve the expected effect.
Recently, the emergence of the digital language division and the availability of cross-lingual benchmarks make researches of cross-lingual texts more popular. However, the performance of existing methods based on mapping relation are not good enough, because sometimes the structures of language spaces are not isomorphic. Besides, polysemy makes the extraction of interaction features hard. For cross-lingual word embedding, a model named Cross-lingual Word Embedding Space Based on Pseudo Corpus (CWE-PC) is proposed to obtain cross-lingual and multilingual word embedding. For cross-lingual sentence pair interaction feature capture, a Cross-language Feature Capture Based on Similarity Matrix (CFC-SM) model is built to extract cross-lingual interaction features. ELMo pretrained model and multiple layer convolution are used to alleviate polysemy and extract interaction features. These models are evaluated on multiple language pairs and results show that they outperform the state-of-the-art cross-lingual word embedding methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.