fingerprints in the form of Raman scattering signals are significantly enhanced when target molecules are in close proximity to the surface of plasmonic nanostructures. [1] In particular, SERS detection schemes show promise in point-of-care biosensing and on-site environmental monitoring owing to their key advantages, including high sensitivity, multiplexing capability, minimal sample preparation, water tolerance, and compatibility to portable devices. Nevertheless, their widespread utilization is still hindered by the challenge in developing a facile fabrication scheme for highly precise and reproducible SERS substrates.
Surface-enhanced Raman scattering (SERS) spectroscopy, with strong and stable signals, was achieved in aqueous solution using colloidal hybrid nanoparticles, consisting of gold nanotriangles (Au NTs) with a nanoscale coating of...
Peripheral nerve injury (PNI) is a neurological disorder that causes more than 9 million patients to suffer from dysfunction of moving and sensing. Using biodegradable polymers to fabricate an artificial nerve conduit that replicates the environment of the extracellular matrix and guides neuron regeneration through the damaged sites has been researched for decades and has led to promising but primarily pre-clinical outcomes. However, few peripheral nerve conduits (PNCs) have been constructed from controllable biodegradable polymeric materials that can maintain their structural integrity or completely degrade during and after nerve regeneration respectively. In this work, a novel PNC candidate material was developed via the electrospinning of polyhydroxy butyrate/chitosan (PHB/CS) composite polymers. An SEM characterisation revealed the resultant PHB/CS nanofibres with 0, 1 and 2 wt/v% CS had less and smaller beads than the nanofibres at 3 wt/v% CS. The water contact angle (WCA) measurement demonstrated that the wettability of PHB/CS electrospun fibres was significantly improved by additional CS. Furthermore, both the thermogravimetric analysis (TGA) and differentiation scanning calorimetry (DSC) results showed that PHB/CS polymers can be blended in a single phase with a trifluoracetic solvent in all compositions. Besides, the reduction in the degradation temperature (from 286.9 to 229.9 °C) and crystallinity (from 81.0% to 52.1%) with increasing contents of CS were further proven. Moreover, we found that the degradability of the PHB/CS nanofibres subjected to different pH values rated in the order of acidic > alkaline > phosphate buffer solution (PBS). Based on these findings, it can be concluded that PHB/CS electrospun fibres with variable blending ratios may be used for designing PNCs with controlled biodegradability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.