The ubiquitous connectivity for the space-air-ground integrated network (SAGIN) of the beyond fifth generation of communication and sixth generation of communication (B5G/6G) is envisaged to meet the needs for the demanded quality of service (QoS), green communication, and "dual carbon" target. However, the offloading and computation of massive latency-sensitive tasks dramatically increases the energy consumption of the network. Furthermore, the traditional power supply technology of the network base stations (BSs) enhances the carbon emission. To address these issues, we first propose a SAGIN architecture with energy harvesting devices, where the BS is powered by both renewable energy (RE) and the conventional grid. The BS explores wireless power transfer (WPT) technology to power the unmanned aerial vehicle (UAV) for stable network operation. RE sharing between neighbouring BSs is designed to fully utilize RE for reduce carbon emission. Secondly, on the basis of task offloading decision, UAV trajectory, and RE sharing ratio, we construct cost functions with joint latency-oriented, energy consumption, and carbon emission. Then, we develop a twin delayed deep deterministic policy gradient (TD3PG) algorithm based on deep reinforcement learning to minimize the cost function. Finally, simulation results demonstrate that the proposed algorithm outperforms the benchmark algorithm in terms of reducing latency, energy saving, and lower carbon emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.