Abstract:The port is an important node in logistics, and its energy consumption constitutes a considerable proportion of the transportation industry. In port logistics, not only does the energy consumption generate carbon emissions, but other business activities do as well. This paper firstly characterizes the sources of carbon emissions and the basic elements in the port system, and proposes the concept of a port-integrated logistics system. Secondly, a case study of The Port of Shenzhen is conducted and a method is provided to measure the carbon emissions in the port-integrated logistics system. This paper then suggests two approaches to reducing carbon emissions, and their economic and environmental benefits are compared. Finally, some policies are put forward to reduce carbon emissions, such as improving the efficiency of loading and unloading, and replacing the heavy fuel oil by low sulfur fuel oil and shore power. The proposed method of carbon emission reduction for port-integrated logistics systems can be generalized for the analysis of various types of ports.
Abstract:In the transformation of urban distribution industry, the problem of enterprises generally retaining a self-distribution mode is highlighted, and it is not conducive for enterprises to develop core business. Around the hot issue of climate change, but also the target of energy conservation and emission reduction, this paper puts forward the method of urban distribution mode to reduce carbon emission intensity, introduces four kinds of typical urban distribution mode, analyzes the core influencing factors of urban distribution mode, studies the carbon accounting method of urban distribution, put forwards the method of low carbon urban distribution mode, analyzes the current situation of the distribution of Guangzhou City, determines the main research types of goods, and applies the method proposed in this paper to the specific enterprises. Urban distribution mode integration and carbon emissions intensity reduction are both considered in this work. The specific application result of 11.28% reduction on carbon emission intensity shows that this method can effectively guide enterprises to develop low carbon urban distribution mode and reduce carbon emission intensity of urban distribution.
This paper investigates five channel structures for manufacturers including three single channels and two dual channels. Consumers' low-carbon preference is considered to explore how market demands and channel selections will change as it remains stable and grows. To compare performances of the five channel structures, we further get the critical points consisting of construction cost of a platform, revenue proportion through a third-party platform, and offline proportion of total demands. The findings show that, when the construction cost is low, a self-owned platform performs better than a retail channel and a third-party platform. If the offline proportion is high, manufacturers would adopt or add a retail channel. When the manufacturers' revenue proportion is high, a third-party platform is more profitable. If the consumers' low-carbon preference grows, dual channels can be chosen to satisfy the increasing online and offline demands. The critical revenue proportion and offline proportion become smaller while the construction cost becomes larger. In addition, numerical analysis is provided to show profit changes and robustness of channel structure. Our findings can provide useful insights for decision-makers to implement low-carbon sustainability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.