With the aim of gathering temporal trends on bacterial epidemiology and resistance from multiple laboratories in China, the CHINET surveillance system was organized in 2005. Antimicrobial susceptibility testing was carried out according to a unified protocol using the Kirby-Bauer method or automated systems. Results were analyzed according to Clinical and Laboratory Standards Institute (CLSI) 2014 definitions. Between 2005 and 2014, the number of bacterial isolates ranged between 22,774 and 84,572 annually. Rates of extended-spectrum β-lactamase production among Escherichia coli isolates were stable, between 51.7 and 55.8%. Resistance of E. coli and Klebsiella pneumoniae to amikacin, ciprofloxacin, piperacillin/tazobactam and cefoperazone/sulbactam decreased with time. Carbapenem resistance among K. pneumoniae isolates increased from 2.4 to 13.4%. Resistance of Pseudomonas aeruginosa strains against all of antimicrobial agents tested including imipenem and meropenem decreased with time. On the contrary, resistance of Acinetobacter baumannii strains to carbapenems increased from 31 to 66.7%. A marked decrease of methicillin resistance from 69% in 2005 to 44.6% in 2014 was observed for Staphylococcus aureus. Carbapenem resistance rates in K. pneumoniae and A. baumannii in China are high. Our results indicate the importance of bacterial surveillance studies.
The immune surveillance system protects host cells from viral infection, and viruses have evolved to escape this system for efficient proliferation in the host. Host cells produce cytokines and chemokines in response to viral infection, and among such effector molecules, type I interferons are the principal antiviral cytokines and therefore effective targets for viruses to disarm host surveillance. Porcine reproductive and respiratory syndrome virus (PRRSV) expresses proteins that circumvent the IFN response and other cellular processes, and to compensate the small coding capacity of PRRSV, these proteins are multifunctional. To date, at least four viral proteins have been identified and studied as viral antagonists of host defenses: N as a structural protein and three non-structural proteins, Nsp1 (Nsp1α and Nsp1β), Nsp2, and Nsp11. Among these, N and Nsp1 are nuclear-cytoplasmic proteins distributed in both the nucleus and cytoplasm of cells. Nsp1 and Nsp2 are viral proteases while Nsp11 is an endoribonuclease. This review describes the current understanding of the role of these proteins in modulating the host innate immune responses. Blocking against virus-mediated inhibition of the innate response may lead to the future development of effective vaccines. The understanding of viral mechanisms modulating the normal cellular processes will be a key to the design of an effective control strategy for PRRS.
Foot-and-mouth disease virus (FMDV) causes a highly contagious, debilitating disease in cloven-Further mechanistic studies demonstrated that 3C pro induced proteasome-and caspase-independent protein degradation of karyopherin ␣1 (KPNA1), the nuclear localization signal receptor for tyrosine-phosphorylated STAT1, but not karyopherin ␣2, ␣3, or ␣4. Finally, we showed that the protease activity of 3C pro contributed to the degradation of KPNA1 and thus blocked STAT1/STAT2 nuclear translocation. Taken together, results of our experiments describe for the first time a novel mechanism by which FMDV evolves to inhibit IFN signaling and counteract host innate antiviral responses.
IMPORTANCE
We show that 3Cpro of FMDV antagonizes the JAK-STAT signaling pathway by blocking STAT1/STAT2 nuclear translocation. Furthermore, 3C pro induces KPNA1 degradation, which is independent of proteasome and caspase pathways. The protease activity of 3C pro contributes to the degradation of KPNA1 and governs the ability of 3C pro to inhibit the JAK-STAT signaling pathway. This study uncovers a novel mechanism evolved by FMDV to antagonize host innate immune responses.
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of PRRS, which is characterized by late-term abortions in sows and respiratory disease in young pigs. Using an infectious cDNA clone of North American PRRSV strain P129, the viral genome was engineered to transcribe an additional subgenomic RNA initiating between non-structural and structural genes. Two unique restriction sites and a copy of the transcription regulatory sequence for ORF6 (TRS6) were inserted between ORFs 1b and 2a, yielding a general purpose expression vector. The enhanced green fluorescent protein (GFP) gene was cloned between the unique sites such that the inserted gene was transcribed from TRS2 which was located upstream within ORF1b, while the copy of TRS6 drives ORF2a/b transcription. Upon transfection of cells with this plasmid, PRRSV infection was initiated and progeny virus "P129-GFP" was obtained. Cells infected with P129-GFP showed fluorescence and the inserted gene was phenotypically stable for at least 37 serial in vitro passages. Subsequently, a capsid (C) protein gene was cloned from porcine circovirus type 2 (PCV2) recovered from an outbreak of porcine multisystemic wasting syndrome (PMWS) and inserted into the PRRSV infectious clone vector, generating virus "P129-PCV". To determine the immunogenicity of the recombinant viruses, pigs were immunized intramuscularly with P129-WT (wild-type), P129-GFP, or P129-PCV2. By 5 weeks post-infection, specific antibody responses to GFP and PCV2 capsid were elicited. This is the first report of foreign gene expression using PRRSV from dedicated subgenomic RNAs and demonstrates the potential use of PRRSV as a vaccine vector for swine pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.