Moving mechanical interfaces are commonly lubricated and separated by a combination of fluid films and solid 'tribofilms', which together ensure easy slippage and long wear life. The efficacy of the fluid film is governed by the viscosity of the base oil in the lubricant; the efficacy of the solid tribofilm, which is produced as a result of sliding contact between moving parts, relies upon the effectiveness of the lubricant's anti-wear additive (typically zinc dialkyldithiophosphate). Minimizing friction and wear continues to be a challenge, and recent efforts have focused on enhancing the anti-friction and anti-wear properties of lubricants by incorporating inorganic nanoparticles and ionic liquids. Here, we describe the in operando formation of carbon-based tribofilms via dissociative extraction from base-oil molecules on catalytically active, sliding nanometre-scale crystalline surfaces, enabling base oils to provide not only the fluid but also the solid tribofilm. We study nanocrystalline catalytic coatings composed of nitrides of either molybdenum or vanadium, containing either copper or nickel catalysts, respectively. Structurally, the resulting tribofilms are similar to diamond-like carbon. Ball-on-disk tests at contact pressures of 1.3 gigapascals reveal that these tribofilms nearly eliminate wear, and provide lower friction than tribofilms formed with zinc dialkyldithiophosphate. Reactive and ab initio molecular-dynamics simulations show that the catalytic action of the coatings facilitates dehydrogenation of linear olefins in the lubricating oil and random scission of their carbon-carbon backbones; the products recombine to nucleate and grow a compact, amorphous lubricating tribofilm.
High-stability, zirconium-based metal−organic frameworks are attractive as heterogeneous catalysts and as model supports for uniform arrays of subsequently constructed heterogeneous catalystsfor example, MOF-node-grafted metal−oxy and metal− sulfur clusters. For hexa-Zr(IV)-MOFs characterized by nodes that are less than 12-connected, sites not used for linkers are ideally occupied by reactive and displaceable OH/H 2 O pairs. The desired pairs are ideal for grafting the aforementioned catalytic clusters, while aqua-ligand lability renders them effective for exposing highly Lewis-acidic Zr(IV) sites (catalytic sites) to candidate reactants. New single-crystal X-ray studies of an eight-connected Zr-MOF, NU-1000, reveal that conventional activation fully removes modulator ligands, but replaces them with three node-blocking formate ligands (from solvent decomposition) and only one OH/H 2 O pair, not foura largely overlooked complication that now appears to be general for Zr-MOFs. Here we describe an alternative activation protocol that effectively removes modulators, avoids formate, and installs the full complement of terminal OH/H 2 O pairs. It does so via an unusual isolatable intermediate featuring eight aqua ligands and four non-ligated chloridesagain as supported by single-crystal X-ray data. We find that complete replacement of node-blocking modulators/formate with the originally envisioned OH/OH 2 pairs has striking consequences; here we touch upon just three. First, elimination of unrecognized formate renders aqua ligands much more thermally labile, enabling open Zr(IV) sites to be obtained at lower temperature. Second, in the absence of formate, which otherwise links and locks pairs of node Zr(IV) ions, reversible removal of aqua ligands engenders reversible contraction of MOF meso-and micropores, as evidenced by X-ray diffraction. Third, formate replacement with OH/OH 2 pairs renders NU-1000 ca.10× more active for catalytic hydrolytic degradation of a representative simulant of G-type chemical warfare agents.
Arthritis is a leading cause of disability, and when nonoperative methods have failed, a prosthetic implant is a cost-effective and clinically successful treatment. Metal-on-metal replacements are an attractive implant technology, a lower-wear alternative to metal-on-polyethylene devices. Relatively little is known about how sliding occurs in these implants, except that proteins play a critical role and that there is a tribological layer on the metal surface. We report evidence for graphitic material in the tribological layer in metal-on-metal hip replacements retrieved from patients. As graphite is a solid lubricant, its presence helps to explain why these components exhibit low wear and suggests methods of improving their performance; simultaneously, this raises the issue of the physiological effects of graphitic wear debris.
The Zr6-based metal–organic framework NU-1000 was successfully functionalized with candidate catalystsMoS x unitsvia SIM (solvothermal deposition in MOFs) of molybdenum(VI), followed by reaction with H2S gas. The structure of the material, named MoS x -SIM, was characterized spectroscopically and through a single-crystal X-ray diffraction measurement. These measurements and others established that the catalyst is monometallic, with mixed oxygen and sulfur coordination, and that it forms from a MOF-node-supported molybdenum-based cluster featuring only oxy ligands. Notably, the formal potential for the MOF-grafted complex, like that for the metal–sulfur active site of hydrogenase, is nearly coincident with the formal potential for the hydrogen couple. Its effective concentration within the mesoporous MOF is several hundred millimolar, and its porous-framework-based immobilization/heterogenization obviates the need for aqueous solubility as a condition for use as a well-defined catalyst. MoS x -SIM was evaluated as an electrocatalyst for evolution of molecular hydrogen from aqueous acid. Although the MoS x -functionalized framework exhibits catalytic behavior, the highly insulating nature of the support inhibits high electrocatalytic performance. Introduction of an archetypal redox mediator (RM), methyl viologen (MV2+), resulted in more than 20-fold enhancement in its catalytic performance on a turnover frequency basis, implying efficient RM-assisted electron transfer to otherwise electrochemically non-addressable MoS x moieties. Electrochemical kinetic studies with additional viologens as mediators reveal an unexpected square-root dependence of overall reaction rate on mediator concentration, as well as sensitivity to the strength of RM•+ as a reductant. These observations, together with observations of potential-dependent H/D isotope effects and potential-dependent pH effects, provide useful insights into the catalysis mechanism and help to explain how the MOF-affixed monometallic catalyst can effectively catalyze a two-electron reduction reaction, i.e., hydrogen evolution from acidified water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.