Inorganic arsenic (iAs) is a toxic metalloid found ubiquitously in the environment. In humans, exposure to iAs can result in toxicity and cause toxicological manifestations. Arsenic trioxide (As2O3) has been used in the treatment for acute promyelocytic leukemia. The kidney is the critical target organ of trivalent inorganic As (iAsIII) toxicity. We examine if oral administration of astaxanthin (AST) has protective effects on nephrotoxicity and oxidative stress induced by As2O3 exposure (via intraperitoneal injection) in rats. Markers of renal function, histopathological changes, Na+-K+ ATPase, sulfydryl, oxidative stress, and As accumulation in kidneys were evaluated as indicators of As2O3 exposure. AST showed a significant protective effect against As2O3-induced nephrotoxicity. These results suggest that the mechanisms of action, by which AST reduces nephrotoxicity, may include antioxidant protection against oxidative injury and reduction of As accumulation. These findings might be of therapeutic benefit in humans or animals suffering from exposure to iAsIII from natural sources or cancer therapy.
Porcine epidemic diarrhea (PED), characterized by diarrhea, vomiting, and dehydration, is an acute enteric infectious disease of pigs. The disease is caused by porcine epidemic diarrhea virus (PEDV), which infects the intestinal mucosal surface. Therefore, mucosal immunization through the oral route is an effective method of immunization. Lactic acid bacteria, which are acid resistant and bile-salt resistant and improve mucosal immunity, are ideal carriers for oral vaccines. The S1 glycoprotein of PEDV mediates binding of the virus with cell receptors and induces neutralizing antibodies against the virus. Therefore, we reversely screened the recombinant strain pPG-SD-S1/Δupp ATCC 393 expressing PEDV S1 glycoprotein by Lactobacillus casei deficient in upp genotype (Δupp ATCC 393). Mice were orally immunized three times with the recombinant bacteria that had been identified for expression, and the changes of anti-PEDV IgG and secreted immunoglobulin A levels were observed over 70 days. The results indicated that the antibody levels notably increased after oral administration of recombinant bacteria. The detection of extracellular cytokines on the 42nd day after immunization indicated high levels of humoral and cellular immune responses in mice. The above results demonstrate that pPG-SD-S1/Δupp ATCC 393 has great potential as an oral vaccine against PEDV.
PR39, a 4.7 kDa proline-rich antimicrobial peptide, acts as a cationic host defense peptide. In addition to killing bacteria, PR39 mediates inflammatory reactions, including cell proliferation, migration, wound healing, and angiogenesis. Here, we examined the antibacterial effects of this peptide. The synthetic gene fragment PR39 was inserted into the secretory expression vector plasmid pPG:612 of Lactobacillus casei, yielding the recombinant strain pPG:612-PR39/L. casei 393. In vitro antibacterial tests showed that expression of the PR39 peptide in recombinant L. casei resulted in antibacterial activity against Escherichia coli and Salmonella but had only minor antibacterial effects in Staphylococcus aureus. In addition, BALB/c mice fed the recombinant pPG:612-PR39/L. casei 393 grew better and had increased peripheral blood lymphocyte percentages, white blood cell numbers, and spleen indices than mice in the control group. Scanning electron microscopy showed that jejunum and duodenum villus height, crypt depth, and the ratio of villus height/crypt depth in the intestinal villi also increased. Moreover, mice fed the recombinant strain showed significantly lower mortality rates than the control group mice when challenged with the enterotoxigenic E. coli K88. Thus, this recombinant expression system had the beneficial characteristics of both L. casei and PR39, supporting its potential as an animal feed additive.
Bovine lactoferricin-lactoferrampin-encoding Lactobacillus reuteri (LR-LFCA) has been found to benefit its host by strengthening its intestinal barrier. However, several questions remain open concerning genetically engineered strains maintaining long-term biological activity at room temperature. In addition, probiotics are vulnerable to harsh conditions in the gut, such as acidity and alkalinity, and bile salts. Microencapsulation is a technique to entrap probiotic bacteria into gastro-resistant polymers to carry them directly to the intestine. We selected nine kinds of wall material combinations to encapsulate LR-LFCA by spray drying microencapsulation. The storage stability, microstructural morphology, biological activity, and simulated digestion in vivo or in vitro of the microencapsulated LR-LFCA were further evaluated. The results showed that LR-LFCA had the highest survival rate when microcapsules were prepared using a wall material mixture (skim milk, sodium glutamate, polyvinylpyrrolidone, maltodextrin, and gelatin). Microencapsulated LR-LFCA increased the stress resistance capacity and colonization abilities. In the present study, we have identified a suitable wall material formulation for spray-dried microencapsulation of genetically engineered probiotic products, which would facilitate their storage and transport.
By releasing a variety of toxins and invasive enzymes, Clostridium perfringens (C. perfringens) attached to the intestinal epithelium triggers receptors on intestinal target cells and activates intracellular signalling pathways, resulting in intestinal inflammation and immunological responses. We developed a model of experimental induction of necrotic enteritis (NE) in chickens in order to investigate the intestinal immunomodulatory to inflammatory damage caused by C. perfringenstype A C57-1 infection. Growth rate and feed intake of the challenged chickens reduced, and the intestinal mucosa had varying degrees of injury and necrosis along with widespread inflammatory infiltration. The relative abundance of Lactobacillus was significantly reduced in the challenged intestine compared to the control, while the level of Clostridiales, Bacteroidales, and Erysipelotrichalesincreased. The activity of the β-glucuronidase and β-glucosidase enzymes in the challenged chickens was also significantly higher. The Th17/Treg balance in the gut was upset, and the proinflammatory cytokines IL-17 and IL-1β and IL-13 also elevated dramatically, which together synergistically induced inflammation. As the inflammation intensified, TGF-4 and IL-2 levels in the gut of the challenge group fell at first and then moderately recovered in comparison to the control group. Immunomodulated by Th2 and Th17 immunity, the challenged chickens were able to produce specific IgY against C. perfringens C57-1, thus exerting limited anti-inflammatory effects. From the standpoint of immunological prevention, this study established a theoretical foundation for C. perfringens infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.