Hericium erinaceus (H. erinaceus) is widely studied as a medicinal and edible fungus. Recent studies have shown that H. erinaceus has protective effects for diseases, such as inflammatory bowel disease and cancer, which are related to gut microbiota. To investigate the benefits of H. erinaceus intake on gut microbiota and blood indices in adulthood, we recruited 13 healthy adults to consume H. erinaceus powder as a dietary supplement. Blood changes due to H. erinaceus consumption were determined by routine hematological examination and characterized by serum biochemical markers. Microbiota composition was profiled by 16S ribosomal RNA gene sequencing. Results showed that daily H. erinaceus supplementation increased the alpha diversity within the gut microbiota community, upregulated the relative abundance of some short-chain fatty acid (SCFA) producing bacteria (Kineothrix alysoides, Gemmiger formicilis, Fusicatenibacter saccharivorans, Eubacterium rectale, Faecalibacterium prausnitzii), and downregulated some pathobionts (Streptococcus thermophilus, Bacteroides caccae, Romboutsia timonensis). Changes within the gut microbiota were correlated with blood chemical indices including alkaline phosphatase (ALP), low-density lipoprotein (LDL), uric acid (UA), and creatinine (CREA). Thus, we found that the gut microbiota alterations may be part of physiological adaptations to a seven-day H. erinaceus supplementation, potentially influencing beneficial health effects.
Diet is a major driver of the structure and function of the gut microbiota, which influences the host physiology. Alcohol abuse can induce liver disease and gut microbiota dysbiosis. Here, we aim to elucidate whether the well-known traditional health food Goji berry targets gut microbiota to prevent liver injury induced by acute alcohol intake. The results showed that Goji supplementation for 14 days alleviated acute liver injury as indicated by lowering serum aspartate aminotransferase, alanine aminotransferase, pro-inflammatory cytokines, as well as lipopolysaccharide content in the liver tissue. Goji maintained the integrity of the epithelial barrier and increased the levels of butyric acid in cecum contents. Furthermore, we established the causal relationship between gut microbiota and liver protection effects of Goji with the help of antibiotics treatment and fecal microbiota transplantation (FMT) experiments. Both Goji and FMT-Goji increased glutathione (GSH) in the liver and selectively enriched the butyric acid-producing gut bacterium Akkermansia and Ruminococcaceae by using 16S rRNA gene sequencing. Metabolomics analysis of cecum samples revealed that Goji and its trained microbiota could regulate retinoyl β-glucuronide, vanillic acid, and increase the level of glutamate and pyroglutamic acid, which are involved in GSH metabolism. Our study highlights the communication among Goji, gut microbiota, and liver homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.