AimTo quantify the proteome composition of the GCF in periodontal health (HH) and in sites with different clinical conditions in chronic periodontitis (CP) subjects.Material and Methods5 subjects with HH and 5 with CP were submitted to full-mouth periodontal examination, and GCF sampling. Sites in the CP group were classified and sampled as periodontitis (P, probing depth, PD>4 mm), gingivitis (G, PD≤3mm with bleeding on probing, BOP), and healthy sites (H, PD≤3mm without BOP). GCF proteins were subjected to liquid chromatography electrospray ionization mass spectrometry for identification, characterization and quantification.Results230 proteins were identified; 145 proteins were detected in HH, 214 in P, 154 in G, and 133 in H. Four proteins were exclusively detected at HH, 43 proteins at P, 7 proteins at G, and 1 protein at H. Compared to HH group, 35 and 6 proteins were more abundant in P and G (p<0.001), respectively; and 4, 15 and 37 proteins were less abundant in P, G and H (p≤0.01), respectively.ConclusionsThere are marked differences in the GCF proteome according to disease profile. Comprehension of the role of the identified proteins in the etiopathogenesis of periodontal disease may lead to biomarkers definition.
Acquired enamel pellicle (AEP) is a protein film that forms on the enamel surface of teeth by selective adsorption of proteins and peptides present in the mouth. This protein film forms the interface between enamel and the damage oral biofilm, which modulates the attachment of bacteria found in oral biofilm. The overall goal of this study was to gain insight into the biological formation of the human in vivo AEP. This study hypothesized that AEP is created by the formation of successive protein layers, which consist of initial binding to enamel and subsequent protein-protein interactions. This hypothesis was examined by observing quantitative and qualitative changes in pellicle composition during the first two hours of AEP formation in the oral cavity. Quantitative mass spectrometry approaches were used to generate an AEP protein profile for each time-point studied. Relative proteomic quantification was carried out for the 50 proteins observed in all four time-points. Notably, the abundance of important salivary proteins, such as histatin 1, decrease with increasing of the AEP formation, while other essential proteins such as statherin showed constant relative abundance in all time-points. In summary, this is the first study that investigates the dynamic process to the AEP formation by using proteomic approaches. Our data demonstrated that there are significant qualitative and quantitative proteome changes during the AEP formation, which in turn will likely impact the development of oral biofilms.
Understanding the composition and structure of the acquired enamel pellicle (AEP) has been a major goal in oral biology. Our lab has conducted studies on the composition of AEP formed on permanent enamel. The exhaustive exploration has provided a comprehensive identification of more than 100 proteins from AEP formed on permanent enamel. The AEP formed on deciduous enamel has not been subjected to the same biochemical characterization scrutiny as that of permanent enamel, despite the fact that deciduous enamel is structurally different from permanent enamel. We hypothesized that the AEP proteome and peptidome formed on deciduous enamel may also be composed of unique proteins, some of which may not be common with AEP of permanent enamel explored previously. Pellicle material was collected from 10 children (aged 18–54 months) and subjected to mass spectrometry analysis. A total of 76 pellicle proteins were identified from the deciduous pellicle proteome. In addition, 38 natural occurring AEP peptides were identified from 10 proteins, suggesting that primary AEP proteome/peptidome presents a unique proteome composition. This is the first study to provide a comprehensive investigation of in vivo AEP formed on deciduous enamel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.