Freshwater fishes worldwide face an array of threats from dam construction, river fragmentation, pollution, over‐exploitation and interactions with introduced species. Such impacts are especially prevalent in densely populated countries undergoing rapid development, and their effects are felt most strongly where regional fish diversity is high. We reviewed studies of the distribution of freshwater fish species throughout China to map a biogeographical pattern and ascertain the environmental factors contributing to this distribution. We then linked this information to identify geographic areas to be recommended as the focus of conservation efforts. A total of 920 species in 302 genera, 54 families and 21 orders were recorded. Among the recorded species, 73% were Cypriniformes and 12% were Siluriformes. Cyprinidae was the most dominant family with 473 species, followed by Balitoridae with 157 species. The administrative division of the biogeography of China's freshwater fishes consisted of nine regions, including the Qinghai‐Tibetan Plateau Region, Oriental Region, Northwest Region, South Region, Loess Plateau Region, Heilongjiang Region, Upper Yangtze Region, 3H Plain Region and Middle‐Lower Yangtze Plain Region. The river system was the primary factor in determining China's freshwater fish biogeography. Under stepwise regression analysis, river discharge was found to be the most influential factor in determining richness, followed by population size and net primary productivity. The higher level of fish endemicity and sensitivity to environmental change led to the identification of Southwest China and the higher areas of Qinghai‐Tibetan Plateau as the primary areas to be considered for fish conservation and potential natural reserves.
Perfluorooctanoic acid (PFOA) is a ubiquitous environmental pollutant suspected of being an endocrine disruptor; however, mechanisms of male reproductive disorders induced by PFOA are poorly understood. In this study, male mice were exposed to 0, 0.31, 1.25, 5, and 20 mg PFOA/kg/day by oral gavage for 28 days. PFOA significantly damaged the seminiferous tubules and reduced testosterone and progesterone levels in the testis in a dose-dependent manner. Furthermore, PFOA exposure reduced sperm quality. We identified 93 differentially expressed proteins between the control and the 5 mg/kg/d PFOA treated mice using a quantitative proteomic approach. Among them, insulin like-factor 3 (INSL3) and cytochrome P450 cholesterol side-chain cleavage enzyme (CYP11A1) as Leydig-cell-specific markers were significantly decreased. We examined in detail the expression patterns of CYP11A1 and associated genes involved in steroidogenesis in the mouse testis. PFOA inhibited the mRNA and protein levels of CYP11A1 and the mRNA levels of 17β-hydroxysteroid dehydrogenase (17β-HSD) in a dose-dependent manner. Moreover, in vitro study showed the reduction in progesterone levels was accompanied by decreased expression of CYP11A1 in cAMP-stimulated mLTC-1 cells. Our findings indicate that PFOA exposure can impair male reproductive function, possibly by disturbing testosterone levels, and CPY11A1 may be a major steroidogenic enzyme targeted by PFOA.
Large earthquakes (magnitude ≥ 7.0) are rare, especially along slow-slipping plate boundaries. Lack of large earthquakes in the instrumental record enlarges uncertainty of the recurrence time; the recurrence of large earthquakes is generally determined by extrapolation according to a magnitude-frequency relation. We enhance the seismological catalog of the Dead Sea Fault Zone by including a 220,000-year-long continuous large earthquake record based on seismites from the Dead Sea center. We constrain seismic shaking intensities via computational fluid dynamics modeling and invert them for earthquake magnitude. Our analysis shows that the recurrence time of large earthquakes follows a power-law distribution, with a mean of 1400 ± 160 years. This mean recurrence is notable shorter than the previous estimate of 11,000 years for the past 40,000 years. Our unique record confirms a clustered earthquake recurrence pattern and a group-fault temporal clustering model, and reveals an unexpectedly high seismicity rate on a slow-slipping plate boundary.
Perfluorooctanoic acid (PFOA) is correlated with male reproductive dysfunction in animals and humans, but the underlying mechanisms for this remain unknown. To explore the potential reproductive toxicity of PFOA, we studied blood-testis barrier (BTB) damage using in vivo and in vitro models. Male mice were gavage-administered PFOA (0-20 mg/kg/d) for 28 consecutive days, and breeding capacity and permeability of the Sertoli cell-based BTB were estimated. Primary Sertoli cells (SCs) were exposed to PFOA (0-500 μM) for 48 h, and transepithelial electrical resistance (TER) was assessed. Furthermore, BTB-associated protein expression, TNFα content, and phosphorylation and protein levels of the mitogen-activated protein kinase (MAPK) pathway were detected. An apparent decrease in mated and pregnant females per male mouse as well as litter weight was observed. Marked BTB damage was evidenced by increased red biotin fluorescence in the lumen tubular of the testes and the decrease in TER in SCs in vitro. The protein levels of claudin-11, connexin-43, N-cadherin, β-catenin, and occludin were significantly decreased in the testes and also in the SCs in vitro except for N-cadherin and β-catenin. TNFα content showed a dose-dependent increase in the testes and a dose- and time-dependent increase in the SCs, with the p-p38/p38 MAPK ratio also increasing in testes and SCs after PFOA exposure. Moreover, PFOA altered expressions of claudin-11, connexin-43, TNFα, and p-p38 MAPK were recovered 48 h after PFOA removal in the SCs. The SCs appeared to be target to PFOA, and the disruption of the BTB may be crucial to PFOA-induced reproductive dysfunction in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.