The levels of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in DNA (5-mC-DNA and 5-hmC-DNA) are strongly correlated with cancer occurrence and development. The ability to distinguish and quantitatively detect them is important for cancer research. We have developed a hybridization chain reaction (HCR)-based electrochemical assay for the signal-amplified detection of the relative contents of 5-mC-DNA and 5-hmC-DNA. The DNA duplexes (containing 5-mC-DNA and 5-hmC-DNA with different percentages) were modified on a gold electrode. Electroactive [Ru(NH3)6]3+ (RuHex) was used as the signal reporter, because it binds to DNA double strands. The duplexes can be cleaved by MspJI endonuclease without HCR, and result in a small peak current. However, the cleavage can be blocked after the 5-hmC-DNA duplex is converted to β-glucosyl-5-hydroxymethylcytosine (β-glu-5-hmC) by T4 β-glucosyltransferase (T4 β-GT), and with the addition of helper DNA, a long double-helix DNA was formed through HCR. A significantly amplified peak current can be achieved due to the adsorption of numerous RuHex. The electrochemical signal of RuHex is correlated to the content of 5-hmC-DNA. Upon fixing the total quantity of 5-mC-DNA and 5-hmC-DNA on the electrode, the signals increase with the increase in the percentage of 5-hmC-DNA for the HCR. With this assay, a detection limit of 0.05% for 5-hmC-DNA was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.