Purpose. To assess the preventive effects of acupuncture at back-shu and front-mu acupoints on rats with restraint water-immersion stress (RWIS)-induced gastric ulcer. Methods. Thirty-six rats were randomly divided into four groups for 10 days of treatment as follows: the normal group received no treatment; the model group received RWIS-induced gastric ulcer; the omeprazole group was administered omeprazole orally every 2 days; and the electroacupuncture group received electroacupuncture at the RN12 and BL21 acupoints every 2 days. After 10 days of treatment, except for the normal group, all rats were induced with gastric ulcer by RWIS for 3 h. The ulcer index (UI), ulcer inhibition rate, and histopathological score were calculated. We determined the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in serum, and the activities of myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), nitric oxide (NO), and glutathione peroxidase (GSH-Px) in serum and gastric tissues. Protein expression of MyD88, nuclear factor (NF)-κB (p65), and toll-like receptor (TLR) 4 was quantified in gastric tissues. Results. The electroacupuncture and omeprazole groups were equivalent in terms of UI, ulcer inhibition rate, and histopathological score. The serum levels of TNF-α and IL-6 were significantly lower in the electroacupuncture group compared with the omeprazole group ( P < 0.05). Compared with the model group, there were significant changes in the levels of NO, MPO, GSH-Px, and MDA in all other groups, while the expression of TLR4, MyD88, and NF-κB p65 in gastric tissue decreased significantly in the electroacupuncture group. The expression of TLR4 was substantially lower in the electroacupuncture group compared with the omeprazole group. Conclusion. Acupuncture at back-shu and front-mu acupoints played a role in preventing gastric ulcer by inhibiting extracellular signals, stimulating kinases in serum and gastric tissues, and activating the inhibition of the TLR4 signaling pathway.
Background In recent years, it has been reported that Qinbai Qingfei Concentrated Pellet (QQCP) has the effect of relieving cough and reducing sputum. However, the therapeutic potentials of QQCP on post-infectious cough (PIC) rat models has not been elucidated. So the current study was aimed to scientifically validate the efficacy of QQCP in post infectious cough. Methods All rats were exposed to sawdust and cigarette smokes for 10 days, and intratracheal lipopolysaccharide (LPS) and capsaicin aerosols. Rats were treated with QQCP at dose of 80, 160, 320 mg/kg. Cough frequency was monitored twice a day for 10 days after drug administration. Inflammatory cell infiltration was determined by ELISA. Meanwhile, the histopathology of lung tissue and bronchus in rats were evaluated by hematoxylin-eosin staining (H&E). Neurogenetic inflammation were measured by ELISA and qRT-PCR. Results QQCP dose-dependently decreased the cough frequency and the release of pro-inflammatory cytokines TNF-α, IL-1β, IL-6 and IL-8, but exerted the opposite effects on the secretion of anti-inflammatory cytokines IL-10 and IL-13 in BALF and serum of PIC rats. The oxidative burden was effectively ameliorated in QQCP-treated PIC rats as there were declines in Malondialdehyde (MDA) content and increases in Superoxide dismutase (SOD) activity in the serum and lung tissue. In addition, QQCP blocked inflammatory cell infiltration into the lung as evidenced by the reduced number of total leukocytes and the portion of neutrophils in the broncho - alveolar lavage fluid (BALF) as well as the alleviated lung damage. Furthermore, QQCP considerable reversed the neurogenetic inflammation caused by PIC through elevating neutral endopeptidase (NEP) activity and reducing Substance P (SP) and Calcitonin gene related peptide (CGRP) expression in BALF, serum and lung tissue. Conclusions Our study indicated that QQCP demonstrated a protective role of PIC and may be a potential therapeutic target of PIC.
Oxidative stress is considered to be one of the important mechanisms involved in carcinogenesis. To investigate the effect of [Gd@C82(OH)22]n and [C60(OH)20]n nanoparticles on the oxidative stress in the tumor-bearing mice, several antioxidative enzymes and antioxidants were tested for mice with or without tumor inoculation. Transplanted tumors were grown in mice by subcutaneous inoculation of a metastatic Lewis lung carcinoma in female C57/BL mice. More importantly, the tumor cells can metastasize into the normal lung tissues gradually. Therefore, in present paper, the activities of copper-zinc superoxide dismutase (CuZn-SOD), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), as well as the levels of reduced glutathione (GSH) and malondialdehyde (MDA) in the tumor-invaded lung tissues of the tumor-bearing mice were compared to the nomal lung tissues of normal mice. After treatment with nanoparticles, the activities of GSH-Px and GST and other parameters related to the oxidative stress were downregulated and tended closely to the normal levels. Pulmonary histopathological results also showed that two different types of water-soluble fullerenes can prevent lungs from inflammatory lesion and tumor invasion. These findings indicate two different types of water-soluble fullerenes materials can downregulate the oxidative stress status by scavenging excessive free radicals and inhibiting the lipid peroxidation in tumor-bearing mice, which can partly explain their protective roles on the pulmonary oxidative-damage induced by the tumor metastasis to lung tissues.
Purpose To clarify the distribution of pathogenic bacteria by analyzing the bacterial susceptibility characteristics and risk factors for adult sepsis in The Wenzhou city, Zhejiang province, China, and to aid early diagnosis, monitoring, and prognosis prediction in cases of bacterial sepsis. Patients and Methods We retrospectively analyzed 329 patients with sepsis admitted to the Second Affiliated Hospital of Wenzhou Medical University between January 2018 and March 2021. Laboratory data were collected before and after treatment; moreover, the bacterial susceptibility characteristics and risk factors for sepsis were comprehensively analyzed using the Sequential Organ Failure Assessment (SOFA) score. Results The SOFA score was negatively correlated with the prognosis (P < 0.05). We isolated 47 pathogenic strains from blood culture samples, including 29 gram-positive strains, 18 gram-negative strains. The most common gram-negative pathogens in blood cultures are Klebsiella pneumoniae and Escherichia coli , while the most common gram-positive pathogens are Staphylococcus aureus and Staphylococcus h omini s . Gram-negative pathogens had resistance rates of 77% and 62.5% to ciprofloxacin and ceftriaxone, respectively. Gram-positive bacteria had a high resistance to penicillin at 100%. Prognostic factors for sepsis included patients’ consciousness, SOFA score, prothrombin time, international normalized ratio, fibrinogen, D-dimer, and aspartate aminotransferase (P < 0.05). Of these, the D-dimer level could predict the outcome of patients with sepsis (AUC = 0.661, P < 0.05). Conclusion The pathogens detected in adult sepsis in Wenzhou are mainly Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus , and Staphylococcus hominis . The pathogens exhibited differences in drug susceptibility. The optimal antibiotics should be chosen based on the principles of rational use and drug susceptibility. Combined with D-dimer levels, these parameters can be used to determine the optimal strategy for preventing and treating pathogenic bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.