abstract:The azoospermia factor c (AZFc) region in the long arm of human Y chromosome is characterized by massive palindromes. It harbors eight multi-copy gene families that are expressed exclusively or predominantly in testis. To assess systematically the role of the AZFc region and these eight gene families in spermatogenesis, we conducted a comprehensive molecular analysis (including Y chromosome haplogrouping, AZFc deletion typing and gene copy quantification) in 654 idiopathic infertile men and 781 healthy controls in a Han Chinese population. The b2/b3 partial deletion (including both deletion-only and deletion-duplication) was consistently associated with spermatogenic impairment. In the subjects without partial AZFc deletions, a notable finding was that the frequency of DAZ and/or BPY2 copy number alterations in the infertile group was significantly higher than in the controls. Combined patterns of DAZ and/or BPY2 copy number abnormality were associated with spermatogenic impairment when compared with the pattern of all AZFc genes with common level copies. In addition, in Y chromosome haplogroup O1 (Y-hg O1), the frequency of copy number alterations of all eight gene families was significantly higher in the case group than that in the control group. Our findings indicate that the DAZ, BPY2 genes may be prominent players in spermatogenesis, and genomic rearrangements may be enriched in individuals belonging to Y-hg O1. Our findings emphasize the necessity of routine molecular analysis of AZFc structural variation during the workup of azoospermia and/or oligozoospermia, which may diminish the genetic risk of assisted reproduction.
Valine catabolism is known to be essential for cancer cells but the detailed mechanism remains unclear. This study is to explore the critical roles of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) in colorectal cancers (CRC) and to develop a new therapy returning valine metabolism homeostasis. High HIBCH expression was first confirmed to correlate with poor survival in patients with CRC, which was then linked to the increased cell growth, resistant apoptosis, and decreased autophagy in CRC cells. The functions of HIBCH in CRC were dependent on its mitochondrial localization. High HIBCH level was further demonstrated to promote the metabolism of tricarboxylic acid cycle as well as oxidative phosphorylation in CRC cells. Based on above findings, we further discovered a novel valine catabolism inhibitor SBF-1. The pharmacological blockade of HIBCH mitochondrial localization with SBF-1 resulted in decreased cancer cell growth and increased autophagy, collectively contributing to the antitumor effect both in vitro and in vivo. Moreover, anti-VEGF therapy with bevacizumab increased HIBCH level in CRC cells, which in turn caused the resistance to the therapy. The interference with HIBCH function by SBF-1 significantly increased the antitumor efficacy of bevacizumab and led to a robust survival benefit. The present study identified HIBCH as a critical enzyme of valine catabolism in CRC progression and resistance to anti-VEGF therapy. We also provided a novel HIBCH inhibitor SBF-1, which highlighted the combined therapy using valine catabolic inhibitor along with anti-VEGF drugs, to control progression of CRC.
Yes kinase-associated protein (YAP) plays an important role in angiogenesis and can promote the occurrence and development of many tumor types. However, whether YAP affects tumor angiogenesis in lung cancer, and its potential mechanism in lung cancer, are unknown. In this study, we explored the role of YAP in the angiogenesis of lung adenocarcinoma, and further illustrated its possible mechanism. The expression levels of YAP and the vascular endothelial marker protein CD31 were examined by immunohistochemistry and immunofluorescence in human lung adenocarcinoma tissues, revealing a possible positive correlation between YAP and CD31 in lung adenocarcinoma. The results of the western blotting (WB) of Human Umbilical Vein Endothelial Cells (HUVECs) after coculture with lung adenocarcinoma H1975 cells, H1975 cell-supernatants and H1975-derived EVs showed that YAP derived from H1975 cells can enter HUVECs via EVs. These results were confirmed by immunofluorescence. Finally, we generated H1975 low-YAP expression cells by transfecting the cells with a shYAP lentivirus, and confirmed that the low expression of YAP in H1975 cells inhibits HUVEC angiogenesis by reducing the amount of YAP that enters HUVECs. We found, for the first time, that YAP promotes angiogenesis in lung adenocarcinoma via EVs, at least partially. Our work may provide a promising method for lung cancer treatment by targeting angiogenesis in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.