Rectangular AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) were fabricated, and the gate and the source of the HFETs consisted of AlGaN/AlN/GaN Schottky barrier diodes (SBDs). Based on the measured forward current-voltage and the capacitance-voltage characteristics of the AlGaN/AlN/GaN SBDs, the series resistance under the Schottky contacts (RS) was calculated using the method of power consumption, which has been proved to be valid. Finally, the method of power consumption for calculating RS was successfully used to study the two-dimensional electron gas electron mobility for a series of circular AlGaN/AlN/GaN SBDs. It is shown that the series resistance under the Schottky contacts cannot be neglected and is important for analysing and characterizing the AlGaN/AlN/GaN SBDs and the AlGaN/AlN/GaN HFETs.
Both circular and rectangular Ni Schottky contacts on AlGaN/AlN/GaN heterostructures have been fabricated. Both of the Schottky barrier heights were measured by internal photoemission. The flat-band voltage (V0) for the AlGaN/AlN/GaN heterostructure Schottky contacts was analyzed and obtained from the forward current-voltage (I-V) characteristics. Based on the forward I-V characteristics and with the obtained flat-band voltage, the Schottky barrier heights for the circular and rectangular diodes have been analyzed and calculated by self-consistently solving Schrodinger’s and Poisson’s equations. The evaluated Schottky barrier heights for the prepared circular and rectangular Ni Schottky diodes agree well with the photocurrent measured results.
An Ni Schottky contact on the AlGaN/GaN heterostructure is fabricated. The flat-band voltage for the Schottky contact on the AlGaN/GaN heterostructure is obtained from the forward current—voltage characteristics. With the measured capacitance—voltage curve and the flat-band voltage, the polarization charge density in the AlGaN/GaN heterostructure is investigated, and a simple formula for calculating the polarization charge density is obtained and analyzed. With the approach described in this paper, the obtained polarization charge density agrees well with the one calculated by self-consistently solving Schrodinger's and Poisson's equations.
Using the Quasi-Two-Dimensional (quasi-2D) model, the current-voltage (I-V) characteristics of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate length were simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the simulation results, we found that the different polarization charge distribution generated by the different channel electric field distribution can result in different polarization Coulomb field scattering, and the difference of the electron mobility mostly caused by the polarization Coulomb field scattering can reach up to 1829.9 cm2/V·s for the prepared AlGaN/AlN/GaN HFET. In addition, it was also found that when the two-dimension electron gas (2DEG) sheet density is modulated by the drain-source bias, the electron mobility appears peak with the variation of the 2DEG sheet density, and the ratio of gate length to drain-source distance is smaller, the 2DEG sheet density corresponding to the peak point is higher
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.