Background: Osteoporosis (OP) is one of the commonly seen bone diseases with low bone mineral densities and trauma fractures. Accumulative studies have demonstrated that the occurrence of OP is closely related to osteoclasts differentiation. LncRNA FTX has been demonstrated to inhibit the development of some human cancers. However, its potential functions in human OP remains to be elusive. Methods: The expressions of FTX and miR-137 in bone and serum samples of patients with or without OP were measured. Bioinformatics analysis, RIP assays and luciferase reporter assays were performed to examine the upstream and downstream transactional factors of miR-137. Functional assays were conducted to check the roles of the Notching1 signaling pathway OP. Results: FTX was suppressed in OP samples and serums, however, miR-137 was greatly elevated. FTX reduced osteoclast-genesis and inhibited osteogenic differentiation by targeting miR-137. This also inhibited the Notch1 signaling pathway. Conclusion: Our experiments and results pointed out that lncRNA FTX up-regulated miR-137 in OP through the Notch1 signaling pathway.
Purpose As the global population ages rapidly, osteoporotic fractures have become an important public health problem. Previous studies have suggested that miR-137 is involved in the regulation of bone formation, but its specific regulatory mechanism remains unclear. In this study, we aimed to explore the expression, role, and regulatory mechanism of miR-137 in the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Methods hBMSCs were induced into osteoblasts at first, and the expression level of miR-137 at different time points was detected. After knockdown and overexpression of miR-137, the effect of miR-137 on the osteogenic differentiation of hBMSCs was examined through alkaline phosphatase (ALP) staining and Alizarin Red staining. Western blotting was performed to detect the expression of runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway. Bioinformatics websites were used to predict the target binding sites for miR-137 and KDM4A, and the results were validated using luciferase reporter gene experiments. Moreover, the ALP activity, calcium nodule formation, and activation of Runx2, OCN, and TLR4/NF-κB pathways were observed after knockdown of KDM4A. Results The expression of miR-137 decreased during osteogenic differentiation. Knockdown of miR-137 expression increased the osteogenic ability of hBMSCs, while overexpression of it weakened the ability. Through the activation of the TLR4/NF-κB pathway, miR-137 inhibited osteogenic differentiation. KDM4A was identified as a predicted target gene of miR-137. After knocking down KDM4A expression, the osteogenic ability of hBMSCs was diminished, and the TLR4/NF-κB pathway was activated. Furthermore, the osteogenic ability of hBMSCs was partially restored and the activation level of TLR4/NF-κB was reduced after miR-137 knockdown. Conclusion MiR-137 enhances the activity of the TLR4/NF-κB pathway by targeting KDM4A, thereby inhibiting the osteogenic differentiation of hBMSCs and exacerbating osteoporosis.
BACKGROUND: Increasing reports on new cement formulations that address the shortcomings of PMMA bone cements and various active components have been introduced to improve the biological activity of PMMA cement. OBJECTIVE: Evaluating the biological properties of PMMA cements reinforced with Bio-Gene allogeneic bone. METHODS: The MC3T3-E1 mouse osteoblast-like cells were utilized to determine the effects of Bio-Gene + PMMA on osteoblast viability, adhesion and differentiation. RESULTS: The combination of allogeneic bone and PMMA increased the number of adherent live cells compared to both control group and PMMA or Bio-Gene group. Scanning electron microscopy observed that the number of cells adhered to Bio-Gene + PMMA was larger than Bio-Gene and PMMA group. Compared with the control and PMMA or Bio-Gene group, the level of ALP and the number of calcium nodules after osteoinduction was remarkably enhanced in Bio-Gene + PMMA group. Additionally, the combination of Bio-Gene and PMMA induced the protein expression of osteocalcin, osterix and collagen I. CONCLUSION: The composition of PMMA and allogeneic bone could provide a more beneficial microenvironment for osteoblast proliferation, adhesion and differentiation. PMMA bone cement reinforced with Bio-Gene allogeneic bone may act as a novel bone substitute to improve the biological activity of PMMA cement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.