Interfaces in semiconductor heterostructures is of continuously greater significance in the trend of scaling materials down to the atomic limit. Since atoms tend to behave more irregularly around interfaces than in internal materials, accurate energy band alignment becomes a major challenge, which determines the ultimate performance of devices. Therefore, a comprehensive understanding of the interplay between heterointerface, energy band, and macro‐performance is desiderated. Here, such interplay is explored by investigating asymmetric heterointerfaces with identical fabrication parameters in multiple‐quantum‐well lasers. The unexpected asymmetry derives from the atomic discrepancy around heterointerfaces, which ultimately improves the optical property through altered valence band offsets. Strain and charge distribution around heterointerfaces are characterized via geometric phase analysis and in situ bias electron holography, respectively. Combining experiments with theories, arsenic‐enrichment at one of the interfaces is considered the origin of asymmetry. To reveal actual band alignment, valence band model is modified focusing on the transition around heterojunctions. The enhanced photoluminescence intensity reflects the alleviation of hole confinement insufficiency and the enlargement of valence band offset. The results help to advance the understanding of the general problem of interface in nanostructures and provide guidance applicable to various scenarios for micro–macro correlation.
Starting from the growth of high-quality 1.3μmGaInNAs∕GaAs quantum well (QW), the QW emission wavelength has been extended up to 1.55μm by a combination of lowering growth rate, using GaNAs barriers and incorporating some amount of Sb. The photoluminescence properties of 1.5μm range GaInNAsSb∕GaNAs QWs are quite comparable to the 1.3μm QWs, revealing positive effect of Sb on improving the optical quality of the QWs. A 1.59μm lasing of a GaInNAsSb∕GaNAs single-QW laser diode is obtained under continuous current injection at room temperature. The threshold current density is 2.6kA∕cm2 with as-cleaved facet mirrors.
High-indium-content InxGa1−xAs/GaAs single/multi-quantum well (SQW/MQW) structures have been systematically investigated. By optimizing the molecular-beam epitaxy growth conditions, the critical thickness of the strained In0.475Ga0.525As/GaAs QWs is raised to 7 nm, which is much higher than the value given by the Matthews and Blakeslee model. The good crystalline quality of the strained InGaAs/GaAs MQWs is proved by x-ray rocking curves. Photoluminescence measurements show that an emission wavelength of 1.25 μm at room temperatures with narrower full width at half maximum less than 30 meV can be obtained. The strain relaxation mechanism is discussed using the Matthews–Blakeslee model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.