In this paper, we report the generation of Ar plasmas by using an electron beam passing through a diamond window. It is observed that plasma brightness varies with the electron beam energy and the duty cycle. The transmission properties of the electrons in a 5-μm-thick diamond film are investigated by both experiments and Monte Carlo simulation. The measured transmittance of the electron beam increases from 20% to 80% by increasing the incident energy of the electron beam on the diamond window from 32.5 keV to 50 keV. The diamond window was checked using a CCD camera and SEM after plasma generation experiments. It is found that the focused electron beam passes through the central region of the diamond window, from the incident plane to the exit plane, and the cross section of the diamond window gradually changes from textured morphology to a featureless structure, indicating that the main energy loss of electrons in the diamond window occurs in the later stage of the transmitting journey. The interaction between the electron and the diamond causes the structure change of the diamond. The simulated transmittances of the electron beam with respect to its incident energy are in agreement with the experimental results.
The phase diagrams of the pseudoternary system {hexane (1) + [hexadecyltrimethylammonium bromide (CTAB) (21) + butan-1-ol ( 22)] (2) + water (3)} at a temperature of 303.15 K were constructed by visual observation and electrical conductivity methods. The effect of the mass ratio of CTAB to butan-1-ol (K m = m 21 /m 22 ) and the water content on the phase diagram and on the microemulsion structure were discussed.
Background: Biocomposite anchors have been a popular choice for use in coracoid transfer procedures for shoulder instability and are hypothesized to allow bone ingrowth. Purpose: To quantitatively evaluate the osteointegration of 85% PLLA/15% β-TCP biocomposite anchors used in the coracoid transfer procedure for shoulder instability. Study Design: Case series; Level of evidence, 4. Methods: We performed a retrospective case series of abstracted data from the records of 74 patients who underwent coracoid transfer procedures with biocomposite anchors. Computed tomography was performed at 24 months postoperatively. A total of 4 researchers independently reviewed the computed tomography images. The density (in Hounsfield unit [HU] values) of the anchor tunnels, glenoid, and subscapularis was assessed, and osteointegration of the anchor tunnels was evaluated with HU values, the quantitative ossification quality score (QOQS), and tunnel widening. Results: Included were 74 patients (58 male, 16 female), involving 76 shoulders and 124 biocomposite anchors. At ≥24-month follow-up, 72 of 124 (58.06%) anchor tunnels were classified as QOQS type 1, including 12 completely ossified tunnels and 60 almost completely ossified tunnels. Some degree of ossification (QOQS types 1-3) was observed in 118 (95.16%) anchor tunnels. Overall, 3 anchor tunnels were enlarged (QOQS type 5). The mean HU value of the anchor tunnels was 339.75, which was significantly higher than the preoperative HU value of the glenoid vault (262.19). Among the 124 anchor tunnels, 79 had HU values higher than their glenoid HU values, and 45 had lower HU values than their glenoid HU values. In the comparison of tunnel HU values at 12 versus ≥24 months, the HU value at ≥24 months was significantly higher. A total of 20 anchor tunnels widened. Conclusion: Among 124 anchor tunnels, 95.16% showed ossification, 58.06% were completely or nearly completely ossified, and 3 were enlarged. The HU value of the anchor tunnel increased over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.