Peptic ulcer disease is a common gastrointestinal tract disorder that affects up to 20% of the population of the world. Treatment of peptic ulcer remains challenging due to the limited effectiveness and severe side effects of the currently available drugs. Hence, natural compounds, owing to their medicinal, ecological, and other safe properties, are becoming popular potential candidates in preventing and treating peptic ulcers. Flavonoids, the most abundant polyphenols in plants, exhibit gastroprotective effects against peptic ulcer both in vivo and in vitro. In this review, we summarized the anti-ulcer functions and mechanisms, and also the bioavailability, efficacy, and safety, of flavonoid monomers in the gastrointestinal tract. Flavonoids exerted cytoprotective and rehabilitative effects by not only strengthening defense factors, such as mucus and prostaglandins, but also protecting against potentially harmful factors via their antioxidative, anti-inflammatory, and antibacterial activities. Although controlled clinical studies are limited at present, flavonoids have shown a promising preventable and therapeutic potential in peptic ulcers.
Liver injury is a significant public health issue nowadays. Shibi tea is a non-Camellia tea prepared from the dried leaves of Adinandra nitida, one of the plants with the greatest flavonoid concentration, with Camellianin A (CA) being the major flavonoid. Shibi tea is extensively used in food and medicine and has been found to provide a variety of health advantages. The benefits of Shibi tea and CA in preventing liver injury have not yet been investigated. The aim of this study was to investigate the hepatoprotective effects of extract of Shibi tea (EST) and CA in mice with carbon tetrachloride (CCl4)-induced acute liver injury. Two different concentrations of EST and CA were given to model mice by gavage for 3 days. Treatment with two concentrations of EST and CA reduced the CCl4-induced elevation of the liver index, liver histopathological injury score, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Western blotting and immunohistochemical analysis demonstrated that EST and CA regulated the oxidative stress signaling pathway protein levels of nuclear factor E2-related factor 2 (Nrf2)/heme-oxygenase-1 (HO-1), the expression of inflammatory cytokines, the phosphorylated nuclear factor-kappaB p65 (p-NF-κB)/nuclear factor-kappaB p65 (NF-κB) ratio, the phospho-p44/42 mitogen-activated protein kinase (p-MAPK), and the apoptosis-related protein levels of BCL2-associated X (Bax)/B cell leukemia/lymphoma 2 (Bcl2) in the liver. Taken together, EST and CA can protect against CCl4-induced liver injury by exerting antioxidative stress, anti-inflammation, and anti-apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.