In mammals, the canonical nuclear factor kappaB (NF-kappaB) signaling pathway activated in response to infections is based on degradation of IkappaB inhibitors. This pathway depends on the IkappaB kinase (IKK), which contains two catalytic subunits, IKKalpha and IKKbeta. IKKbeta is essential for inducible IkappaB phosphorylation and degradation, whereas IKKalpha is not. Here we show that IKKalpha is required for B cell maturation, formation of secondary lymphoid organs, increased expression of certain NF-kappaB target genes, and processing of the NF-kappaB2 (p100) precursor. IKKalpha preferentially phosphorylates NF-kappaB2, and this activity requires its phosphorylation by upstream kinases, one of which may be NF-kappaB-inducing kinase (NIK). IKKalpha is therefore a pivotal component of a second NF-kappaB activation pathway based on regulated NF-kappaB2 processing rather than IkappaB degradation.
The IκB kinase (IKK) complex is composed of three subunits, IKKα, IKKβ, and IKKγ (NEMO). While IKKα and IKKβ are highly similar catalytic subunits, both capable of IκB phosphorylation in vitro, IKKγ is a regulatory subunit. Previous biochemical and genetic analyses have indicated that despite their similar structures and in vitro kinase activities, IKKα and IKKβ have distinct functions. Surprisingly, disruption of the Ikkα locus did not abolish activation of IKK by proinflammatory stimuli and resulted in only a small decrease in nuclear factor (NF)-κB activation. Now we describe the pathophysiological consequence of disruption of the Ikkβ locus. IKKβ-deficient mice die at mid-gestation from uncontrolled liver apoptosis, a phenotype that is remarkably similar to that of mice deficient in both the RelA (p65) and NF-κB1 (p50/p105) subunits of NF-κB. Accordingly, IKKβ-deficient cells are defective in activation of IKK and NF-κB in response to either tumor necrosis factor α or interleukin 1. Thus IKKβ, but not IKKα, plays the major role in IKK activation and induction of NF-κB activity. In the absence of IKKβ, IKKα is unresponsive to IKK activators.
The oligomeric IkappaB kinase (IKK) is composed of three polypeptides: IKKalpha and IKKbeta, the catalytic subunits, and IKKgamma, a regulatory subunit. IKKalpha and IKKbeta are similar in structure and thought to have similar function-phosphorylation of the IkappaB inhibitors in response to proinflammatory stimuli. Such phosphorylation leads to degradation of IkappaB and activation of nuclear factor kappaB transcription factors. The physiological function of these protein kinases was explored by analysis of IKKalpha-deficient mice. IKKalpha was not required for activation of IKK and degradation of IkappaB by proinflammatory stimuli. Instead, loss of IKKalpha interfered with multiple morphogenetic events, including limb and skeletal patterning and proliferation and differentiation of epidermal keratinocytes.
Viral infection or double-stranded (ds) RNA induce interferons (IFN) and other cytokines. Transcription factors mediating IFN induction are known, but the signaling pathways that regulate them are less clear. We now describe two such pathways. The first pathway leading to NF-kappaB depends on the dsRNA-responsive protein kinase (PKR), which in turn activates IKB kinase (IKK) through the IKKbeta subunit. The second viral-and dsRNA-responsive pathway is PKR independent and involves Jun kinase (JNK) activation leading to stimulation of AP-1. Both IKKbeta and JNK2 are essential for efficient induction of type I IFN and other cytokines in response to viral infection or dsRNA. This study establishes a general role for these kinases in activation of innate immune responses.
The IKKalpha and IKKbeta catalytic subunits of IkappaB kinase (IKK) share 51% amino-acid identity and similar biochemical activities: they both phosphorylate IkappaB proteins at serines that trigger their degradation. IKKalpha and IKKbeta differ, however, in their physiological functions. IKKbeta and the IKKgamma/NEMO regulatory subunit are required for activating NF-kappaB by pro-inflammatory stimuli and preventing apoptosis induced by tumour necrosis factor-alpha (refs 5,6,7,8,9,10,11). IKKalpha is dispensable for these functions, but is essential for developing the epidermis and its derivatives. The mammalian epidermis is composed of the basal, spinous, granular and cornified layers. Only basal keratinocytes can proliferate and give rise to differentiated derivatives, which on full maturation undergo enucleation to generate the cornified layer. Curiously, keratinocyte-specific inhibition of NF-kappaB, as in Ikkalpha-/- mice, results in epidermal thickening but does not block terminal differentiation. It has been proposed that the epidermal defect in Ikkalpha-/- mice may be due to the failed activation of NF-kappaB. Here we show that the unique function of IKKalpha in control of keratinocyte differentiation is not exerted through its IkappaB kinase activity or through NF-kappaB. Instead, IKKalpha controls production of a soluble factor that induces keratinocyte differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.