A large quantity of nanosized ZnO tubular structures was prepared using a very simple thermal evaporation of mixed Zn–ZnO powders under a wet oxidation condition. The ZnO nanotubes have a hollow core with crystalline wall of 8–20 nm in thickness. Optical properties of ZnO nanotubes were studied at room temperature. Raman peaks arising from the ZnO nanotubes were analyzed, which correspond well to that of the bulk ZnO sample. The photoluminescence measurements of ZnO nanotubes revealed an intensive UV peak at 377 nm corresponding to the free exciton emission, and a broad peak at about 500 nm arising from defect-related emission.
Logical qubit encoding and quantum error correction (QEC) have been experimentally demonstrated in various physical systems with multiple physical qubits, however, logical operations are challenging due to the necessary nonlocal operations. Alternatively, logical qubits with bosonic-mode-encoding are of particular interest because their QEC protection is hardware efficient, but gate operations on QEC protected logical qubits remain elusive. Here, we experimentally demonstrate full control on a single logical qubit with a binomial bosonic code, including encoding, decoding, repetitive QEC, and high-fidelity (97.0% process fidelity on average) universal quantum gate set on the logical qubit. The protected logical qubit has shown 2.8 times longer lifetime than the uncorrected one. A Ramsey experiment on a protected logical qubit is demonstrated for the first time with two times longer coherence than the unprotected one. Our experiment represents an important step towards fault-tolerant quantum computation based on bosonic encoding.
Ultralong, single-crystal Ni2Si nanowires sheathed with amorphous silicon oxide were synthesized on a large scale by a chemical vapor transport (CVT) method, using iodine as the transport reagent and Ni2Si powder as the source material. Structural characterization using powder X-ray diffraction, electron microscopy, and energy-dispersive spectroscopy shows that the nanowires have Ni2Si-SiOx core-shell structure with single-crystal Ni2Si core and amorphous silicon oxide shell. The oxide shell is electrically insulating and can be removed by HF etching. Four-terminal electrical measurements show that the single-crystal nanowire has extremely low resistivity of 21 muOmega.cm and is capable of supporting remarkably high failure current density >108 A/cm2. These unique Ni2Si nanowires are very attractive nanoscale building blocks for interconnects and fully silicided (FUSI) gate applications in nanoelectronics.
Faithfully transferring quantum state is essential for quantum information processing. Here, we demonstrate a fast (in 84 ns) and high-fidelity (99.2%) transfer of arbitrary quantum states in a chain of four superconducting qubits with nearest-neighbor coupling. This transfer relies on full control of the effective couplings between neighboring qubits, which is realized only by parametrically modulating the qubits without increasing circuit complexity. Once the couplings between qubits fulfill specific ratio, a perfect quantum state transfer can be achieved in a single step, therefore robust to noise and accumulation of experimental errors. This quantum state transfer can be extended to a larger qubit chain and thus adds a desirable tool for future quantum information processing. The demonstrated flexibility of the coupling tunability is suitable for quantum simulation of manybody physics which requires different configurations of qubit couplings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.