In this paper, a propagation path loss model for inland river is proposed by three improvements compared with the Round Earth Loss (REL) model for open-sea environment. Specifically, parameters optimization uses Okumura-Hata model in dB scale to replace the equation transformed from the free space loss in REL model; secondly, diffraction loss caused by the obstacles (e.g., large buildings, bridges, or some other facilities near the river bank) is also taken into account; mixed-path methodology as another improvement is used for Inland River (IR) model because the actual propagation environment between transmitter (TX) antenna and receiver (RX) antenna contains both land part and water part. The paper presents a set of 1.4 GHz measurements conducted along the Yangtze River in Wuhan. According to the comparison between path loss models and experimental results, IR model shows a good matching degree. After that, Root Mean Square Error (RMSE), Grey Relation Grade and Mean Absolute Percentage Error (GRG-MAPE), Pearson Correlation Coefficient, and Mean Absolute Percentage Error (PCC-MAPE) are employed to implement quantitative analysis. The results prove that IR model with consideration of mixed path and deterministic information is more accurate than other classic empirical propagation models for these scenarios.
This paper reports the results of a car-following measurement of the wireless propagation channel at 5.9 GHz on a seriously congested urban road in Wuhan, China. The small-scale amplitude-fading distribution was determined to be a Ricean distribution using the Akaike information criterion. This result shows that this car-following scenario can be regarded as a line-of-sight radio channel. Moreover, the statistical K-factor features follow a Gaussian distribution. According to the power delay profile and average power delay profile, we found that street buildings in this dense urban environment contributed to very strong reflection phenomena. The impact of a powerful reflection is analyzed through path loss, delay, and Doppler spreads in the channel statistical properties. In the frequency domain, we observe a U-shape delay-Doppler spectrum that proved that the dense urban scenario consists of scattering channels. All these results are summarized in tabular form that will be useful in the modeling of vehicle-to-vehicle wireless communication systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.