The timing of formation of the low‐gradient, internally drained landscape of the Tibetan Plateau is fundamental to understanding the evolution of the plateau as a whole. Well‐dated sedimentary records of internal drainage of rivers into lakes are used to reveal the timing of this evolution. Here we redate the youngest continental sedimentary successions of central Tibet in the Lunpola Basin and propose a new age range of ca. 35 to 9 Ma, significantly younger than previously thought. We demonstrate long‐standing internal drainage in central Tibet since the late Eocene and stable sedimentary environments, source regions, and low topographic relief since at least the early Miocene. We suggest that sediment aggradation of internal drainage and reduction of hillslope gradients by erosion dominate the formation of low‐relief landscapes and that the late Cenozoic drainage basins in central Tibet developed in response to flow in the lower crust and/or mantle lithosphere.
In past decades, the formation of dolomite at low temperature has been widely studied in both natural systems and cultured experiments, yet the mechanism(s) involved in the nucleation and precipitation of dolomite remains unresolved. Late Eocene dolomitic deposits from core in the upper Niubao Formation (Lunpola Basin, central Tibetan Plateau, China) are selected as a case study to understand the dolomitization process(es) in the geological record. Dolomite formation in Lunpola Basin can be ascribed to a different mechanism forming the large quantities of replacive dolostones in the geological record; and provides a potential fossil analogue for primary dolomite precipitation at low temperature. This analogue consists of an alternation of laminated dolomitic beds, organic‐rich and siliciclastic layers; formed in response to intense evaporation interpreted to take place in a continental shallow lake environment. Mineralogical, textural and stable isotopic evaluations suggest that the dolomite from those dense‐clotted laminated beds is a primary precipitate. At the nanoscale, these dolomitic beds are composed of Ca–Mg carbonate globular nanocrystals (diameter 80 to 100 nm) embedded in an organic matrix and attached to clay flakes. Micro‐infrared spectroscopy analyses have revealed the presence of aliphatic compounds in the organic matrix. Microscopic and elemental compositional studies suggest that clay surfaces may facilitate the nucleation of dolomite at low temperature in the same way as the organic matrix does. The dolomite laminae show values for δ18OVPDB from −3.2 to −1.76‰ and for δ13CVPDB from −2.62 to −3.78‰. Inferred δ18OSMOW values of the lake water reveal typical evaporitic hydrological conditions. These findings provide a potential link to primary dolomite formation in ancient and modern sedimentary environments; and shed new light on the palaeoenvironmental conditions in central Tibet during the Eocene.
In parallel with pronounced cooling in the oceans, vast areas of the continents experienced enhanced aridification and restructuring of vegetation and animal communities during the Late Miocene. Debate continues over whether p CO 2 -induced global cooling was the primary driver of this climate and ecosystem upheaval on land. Here we present an 8 to 5 Ma land surface temperatures (LST) record from East Asia derived from paleosol carbonate clumped isotopes and integrated with climate model simulations. The LST cooled by ~7 °C between 7.5 and 5.7 Ma, followed by rapid warming across the Miocene–Pliocene transition (5.5 to 5 Ma). These changes occurred synchronously with variations in alkenone and Mg/Ca-based sea surface temperatures and with hydroclimate and ecosystem shifts in East Asia, highlighting a global climate forcing mechanism. Our modeling experiments additionally demonstrate that p CO 2 -forced cooling would have altered moisture transfer and pathways and driven extensive aridification in East Asia. We, thus, conclude that the East Asian hydroclimate and ecosystem shift was primarily controlled by p CO 2 -forced global cooling between 8 and 5 Ma.
A series of tectonic events during the late Mesozoic, including the Yanshanian Orogeny and the Early Cretaceous tectonic extension, reshaped the tectonic regime and landscape of North China (NC). During this period, the Taihang Mountains (THM) became a prominent geomorphic and ecological separation zone, which separates NC into regions with different landforms, tectonic settings, and climatic regimes. The uplift history of the THM during the late Mesozoic is of great interest, since it is critical to constrain the geodynamic and regional climatic evolution of NC. In this study, we report the first carbonate clumped isotope thermometry (Δ47) data for paleosol carbonates from this region to constrain the paleoelevation of the north THM during the late Mesozoic. Our result indicates that the north THM was almost certainly 2.0 ± 0.8 km elevation at ca. 160 Ma associated with crust thickening and shortening. After the collapse of the eastern North China Craton (NCC), the north THM maintained high elevation at ca. 113 Ma (2.7 ± 0.7 km). The findings suggest that the present topographic features of NC may have been established in the Early Cretaceous. Finally, our study suggests elevation decrease at the end of the Early Cretaceous (ca. 110−100 Ma), which is possibly related to isostatic adjustment caused by asthenosphere upwelling and partial crustal thinning in the central NCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.