Impaired salivary gland (SG) function leading to oral diseases is relatively common with no adequate solution. Previously, tissue engineering of SG had been proposed to overcome this morbidity, however, not yet clinically available. Multiwall inorganic (tungsten disulfide [WS2]) nanotubes (INT-WS2) and fullerene-like nanoparticles (IF-WS2) have many potential medical applications. A yet unexplored venue application is their interaction with SG, and therefore, our aim was to test the biocompatibility of INT/IF-WS2 with the A5 and rat submandibular cells (RSC) SG cells. The cells were cultured and subjected after 1 day to different concentrations of INT-WS2 and were compared to control groups. Growth curves, trypan blue viability test, and carboxyfluorescein succinimidyl ester (CFSE) proliferation assay were obtained. Furthermore, cells morphology and interaction with the nanoparticles were observed by light microscopy, scanning electron microscopy and transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy. The results showed no significant differences in growth curves, proliferation kinetics, and viability between the groups compared. Moreover, no alterations were observed in the cell morphology. Interestingly, TEM images indicated that the nanoparticles are uptaken by the cells and accumulate in cytoplasmic vesicles. These results suggest promising future medical applications for these nanoparticles.
Irradiated head and neck cancer patients suffer from irreversible loss of salivary gland (SG) function, along with significant morbidity and compromised quality of life. To date there is no biologically-based treatment for this distress. Adult salivary gland stem cells are promising candidates for autologous transplantation therapy in the context of tissue-engineered artificial SGs or direct cell therapy. The major restrictions in handling such cells are their limited lifespan during in vitro cultivation, resulting in a narrow time-window for implantation and a risk of tumorigenic changes during culture. To overcome these difficulties, we tested in a rat model the possibility of establishing a personal/autologous SG stem cell bank. SG's integrin-α6β1-expressing cells were shown to hold a subpopulation of SG-specific progenitor-cells. Explanted and cultured single cell-originated clones were cryopreserved for up to 3 years and shown to exhibit genetic and functional stability similar to noncryopreserved cells, as was emphasized by soft agar assay, division potential assessment, flow cytometric analysis, real-time reverse transcriptase-polymerase chain reaction, in vitro three-dimensional differentiation assay, and immunofluorescence confocal microscopy. Future integration of the novel strategies presented herein to a clinical therapeutic model will allow safe preservation until transplantation and repeated transplantation if needed. These tools open a new venue for adult autologous stem-cell transplantation-based SG regeneration.
Adult salivary gland stem cells are promising candidates for cell therapy and tissue regeneration in cases of irreversible damage to salivary glands in head and neck cancer patients undergoing irradiation therapy. At present, the major restriction in handling such cells is their relatively limited life span during in vitro cultivation, resulting in an inadequate experimental platform to explore the salivary gland-originated stem cells as candidates for future clinical application in therapy. We established a spontaneous immortal integrin α6β1-expressing cell line of adult salivary progenitor cells from rats (rat salivary clone [RSC]) and investigated their ability to sustain cellular properties. This line was able to propagate for more than 400 doublings without loss of differentiation potential. RSC could differentiate in vitro to both acinar- and ductal-like structures and could be further manipulated upon culturing on a 3D scaffolds with different media supplements. Moreover, RSC expressed salivary-specific mRNAs and proteins as well as epithelial stem cell markers, and upon differentiation process their expression was changed. These results suggest RSC as a good model for further studies exploring cellular senescence, differentiation, and in vitro tissue engineering features as a crucial step toward reengineering irradiation-impaired salivary glands.
Salivary glands (SGs) are irreversibly damaged by irradiation (IR) treatment in head and neck cancer patients. Here, we used an animal irradiation model to investigate and define the molecular mechanisms affecting SGs following IR, focusing on saliva proteome and global transcription profile of submandibular salivary gland (SSG) tissue.We show that saliva secretion was gradually reduced to 50% of its initial level 12 weeks post-IR. Saliva protein composition was further examined by proteomic analysis following mass spectrometry (MS) analysis that revealed proteins with reduced expression originating from SSGs and proteins with increased expression derived from the serum, both indicating salivary tissue damage. To examine alterations in mRNA expression levels microarray analysis was performed. We found significant alterations in 95 genes, including cell-cycle arrest genes, SG functional genes and a DNA repair gene.Tissue damage was seen by confocal immunofluorescence of α-amylase and c-Kit that showed an increase and decrease, respectively, in protein expression. This was coherent with real-time PCR results.This data indicates that IR damages the SSG cells' ability to produce and secrete saliva and proteins, and maintain the physiological barrier between serum and saliva. The damage does not heal due to cell-cycle arrest, which prevents tissue regeneration. Taken together, our results reveal a new insight into IR pathobiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.