Cell membrane coated nanoparticles (NPs) is a biomimetic strategy developed to engineer therapeutic devices consisting of a NP core coated with membrane derived from natural cells such as erythrocytes, white blood cells, cancer cells, stem cells, platelets or bacterial cells. These biomimetic NPs have gained a lot of attention recently owing to their cell surface mimetic features and tailored nanomaterial characteristics. They have shown strong potential in diagnostic and therapeutic applications including those in drug delivery, immune modulation, vaccination and detoxification. Herein we review the various types of cell membrane coated NPs reported in the literature and the unique strengths of these biomimetic NPs with an emphasis on how these bioinspired camouflage strategies have led to improved therapeutic efficacy. We also highlight the recent progress made by each platform in advancing healthcare and precis the major challenges associated with these NPs.
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. The contact area of the water droplet on hydrophobic titanium planar surface (foil) was found to decrease during evaporation, whereas the contact area of the droplet on hydrophobic nanorough titanium surfaces practically remained unaffected until the complete evaporation.This demonstrates that the surface morphology and roughness at the nanoscale level substantially affect the titanium dioxide surface-water droplet interaction, opposing to previous observations for microscale structured surfaces. The difference in surface topographic nanofeatures of nanostructured titanium surfaces could be correlated not only with the time-dependency of the contact area, but also with time-dependency of the contact angle and electrochemical properties of these surfaces.
Understanding peptide self-assembly mechanisms and stability of the formed assemblies is crucial for the development of functional nanomaterials. Herein, we have adopted a rational design approach to demonstrate how a minimal structural modification to a nonassembling ultrashort ionic selfcomplementary tetrapeptide FEFK (Phe4) remarkably enhanced the stability of self-assembly into β-sheet nanofibers and induced hydrogelation. This was achieved by replacing flexible phenylalanine residue (F) by the rigid phenylglycine (Phg), resulting in a constrained analogue PhgEPhgK (Phg4), which positioned aromatic rings in an orientation favorable for aromatic stacking. Phg4 self-assembly into stable β-sheet ladders was facilitated by π-staking of aromatic side chains alongside hydrogen bonding between backbone amides along the nanofiber axis. The contribution of these noncovalent interactions in stabilizing self-assembly was predicted by in silico modeling using molecular dynamics simulations and semiempirical quantum mechanics calculations. In aqueous medium, Phg4 β-sheet nanofibers entangled at a critical gelation concentration ≥20 mg/mL forming a network of nanofibrous hydrogels. Phg4 also demonstrated a unique surface activity in the presence of immiscible oils and was superior to commercial emulsifiers in stabilizing oil-in-water (O/W) emulsions. This was attributed to interfacial adsorption of amphiphilic nanofibrils forming nanofibrilized microspheres. To our knowledge, Phg4 is the shortest ionic self-complementary peptide rationally designed to self-assemble into stable β-sheet nanofibers capable of gelation and emulsification. Our results suggest that ultrashort ionic-complementary constrained peptides or UICPs have significant potential for the development of cost-effective, sustainable, and multifunctional soft bionanomaterials.
We present a facile method to prepare nanostructured lipid particles stabilized by carbon nanotubes (CNTs). Single-walled (pristine) and multiwalled (functionalized) CNTs are used as stabilizers to produce Pickering type oil-in-water (O/W) emulsions. Lipids namely, Dimodan U and Phytantriol are used as emulsifiers, which in excess water self-assemble into the bicontinuous cubic Pn3m phase. This highly viscous phase is fragmented into smaller particles using a probe ultrasonicator in presence of conventional surfactant stabilizers or CNTs as done here. Initially, the CNTs (powder form) are dispersed in water followed by further ultrasonication with the molten lipid to form the final emulsion. During this process the CNTs get coated with lipid molecules, which in turn are presumed to surround the lipid droplets to form a particulate emulsion that is stable for months. The average size of CNT-stabilized nanostructured lipid particles is in the submicron range, which compares well with the particles stabilized using conventional surfactants. Small angle X-ray scattering data confirms the retention of the original Pn3m cubic phase in the CNT-stabilized lipid dispersions as compared to the pure lipid phase (bulk state). Blue shift and lowering of the intensities in characteristic G and G' bands of CNTs observed in Raman spectroscopy characterize the interaction between CNT surface and lipid molecules. These results suggest that the interactions between the CNTs and lipids are responsible for their mutual stabilization in aqueous solutions. As the concentrations of CNTs employed for stabilization are very low and lipid molecules are able to functionalize the CNTs, the toxicity of CNTs is expected to be insignificant while their biocompatibility is greatly enhanced. Hence the present approach finds a great potential in various biomedical applications, for instance, for developing hybrid nanocarrier systems for the delivery of multiple functional molecules as in combination therapy or polytherapy. Video LinkThe video component of this article can be found at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.