Curculigo orchioides and C. latifolia have been used as traditional medicines such as antidiabetic and anticancer. This study measured the total phenolics and flavonoid contents as well as analyzed the functional groups and chemical compounds using Fourier-transform infrared (FTIR) spectra and UHPLC-Q-Orbitrap-HRMS profiling for the discrimination of plant parts, geographical origin, and compounds that presumably have a significant contribution as antioxidant and α-glucosidase inhibitors on both plants. The total phenolics and flavonoids contents in Curculigo species varied from 142.09 to 452.47 mg gallic acid equivalent (GAE/g) and from 0.82 to 5.44 mg quercetin equivalent (QE/g), respectively. The lowest IC50 for antioxidant and α-glucosidase inhibitory activities is presented by C. latifolia from a higher altitude region. Principal component analysis (PCA) from FTIR and UHPLC-Q-Orbitrap-HRMS data could discriminate the plant parts and geographical origin. Partial least squares (PLS) analysis has identified several functional groups, such as O–H, C–H, C=O, C–C, C–O, and chemical compounds, unknown-185 and unknown-85, that are most likely to contribute to the antioxidant and α-glucosidase inhibitory activities.
Hilmi M, Hamim H, Sulistyaningsih YC, Taufikurahman. 2018. Growth, histochemical and physiological responses of nonedibleoil producing plant (Reutealis trisperma) to gold mine tailings. Biodiversitas 19: 1294-1302. Reutealis trisperma (Blanco) AiryShaw is a non-edible biodiesel producing plant that is able to grow well in various unfavorable environmental conditions. The studyaimed to analyze the growth, physiological, and anatomical responses of R. trisperma to gold mine tailings. Three-month-old of R.trisperma were grown in 8 kg of polybags contained with mixed soil-compost medium treated with 0, 25, 50 and 100% of gold minetailings for 3 months. Root and shoot growth, physiological and anatomical characters, and histochemical analysis of Pb inside the rootsand leaves were examined. The root and shoot growth as well as chlorophyll a and b contents of R. trisperma grown in sole gold minetailing at 100% significantly decreased, while at the lower concentration of gold mine tailings, the decrease of the growth performanceswas not significant, or even increased shown in that of 25% of tailing treatment. The treatment of gold mine tailing at 100% alsoinduced lipid peroxidation, indicated by the significant increase in malondialdehyde (MDA) contents in the root as well as the leaves.Histochemical analysis showed that accumulation of Pb occurred both in roots as well as in leaves of R. trisperma treated with 100% oftailings. High-level tailing treatment also induced anatomical alteration in roots as well as leaves of the species. These results indicatedthat gold mine tailings induced oxidative stress in roots and leaves of R. trisperma resulted in growth inhibition.
Study on resistance mechanism to vascular-streak dieback (VSD) disease in cacao (Theobroma cacao L.) is limited due to the lack of fungal spores for artificial inoculation. This research was conducted to study the production of secondary metabolites that appear to be evidence of defense signaling in resistant clone of Sca 6 and susceptible clone of TSH 858 to Ceratobasidium theobromae natural infection. A fungal staining method was employed to detect C. theobromae hyphae at early infection stages, before VSD symptoms appear. Metabolite profiling was analyzed using pyrolysis gas chromatography mass spectrometry (Py-GCMS) at pre-, early and late stages of C. theobromae infection. Histochemical and anatomical characteristics of both healthy and infected leaves were also observed to identify the accumulation sites of secondary metabolites on and in cocoa leaf tissues. The results confirmed that fungal staining using trypan blue can detect early stages of C. theobromae infection; at the 14th week (on susceptible seedlings) and the 18th week (on resistant clones), following placement of the seedlings under infected cacao plants. Phenylpropanoid biosynthesis, terpenoid biosynthesis, environmental information processing signal transduction pathways, and aromatic biodegradation were detected as important metabolite pathways during defense mechanism. I-limonene (terpenoid), p-ethylguaiacol (phenols) and 2.3 dihidrobenzofuran (heterocyclic compounds) were proposed as an active defense produced by the host after infected by pathogen mainly on late infection of C. theobromae. Terpenoid and phenol compounds were accumulated on the glandular trichomes, idioblast of upper and bottom epidermis, phloem vessel and cortex idioblast of cacao leaves. Epidermis thickness of resistant clone was significantly greater than that of susceptible clone on both surfaces. Leaf epidermis tissue and the accumulated compounds in epidermis idioblast may act as the physical and biochemical markers of cocoa resistance to VSD.
Curculigo orchioides and Curculigo latifolia (Hypoxidaceae) have been widely used as traditional medicines in Indonesia and other Asian countries for antihyperglycemic, aphrodisiac, antioxidant, and antimicrobial treatments. This work aimed to determine the distribution of secretory structures and metabolites. Metabolite profiling approach of the plant organs was determined by UHPLC-Q-Orbitrap-HRMS. Histochemical-based techniques on rhizome, root, petiole, and leaf, with transversal sections on fresh samples, were prepared using a razor blade to determine the secretory structures of the plants, followed by plant anatomy procedures. Histochemical analysis was carried out using several reagents to detect the metabolites. Metabolite profiling revealed several classes of compounds, i.e. phenolics, alkaloids, terpenes, essential oils, and lipophilic. Secretory cavities and idioblast cells, were detected in both species and localize a diverse metabolites. Additionally to the specialized structures, hypodermis, epidermis, intercellular spaces, and cuticle also contain some of those compounds. The secretory structures spread over the different organs. This discovery may be useful to distinguish particular organs as medicine source, which does not only depend on the availability of rhizome. The secretory structures and the chemical compounds of the two species, described herein for the first time, can be used further in plant identification purposes based on chemical markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.