Climate change will have potentially significant effects on freshwater quality due to increases in river and lake temperatures, changes in the magnitude and seasonality of river runoff, and more frequent and severe extreme events. These physical impacts will in turn have economic consequences through effects on riparian development, river and reservoir recreation, water treatment, harmful aquatic blooms, and a range of other sectors. In this paper, we analyze the physical and economic effects of changes in freshwater quality across the contiguous U.S. in futures with and without global-scale greenhouse gas mitigation. Using a water allocation and quality model of 2119 river basins, we estimate the impacts of various projected emissions outcomes on several key water quality indicators, and monetize these impacts with a water quality index approach. Under mitigation, we find that water temperatures decrease considerably and that dissolved oxygen levels rise in response. We find that the annual economic impacts on water quality of a high emissions scenario rise from $1.4 billion in 2050 to $4 billion in 2100, leading to present value mitigation benefits, discounted at 3%, of approximately $17.5 billion over the 2015-2100 period.
Many residents of the Zambezi River Valley are dependent on water-related resources. Greenhouse gas (GHG) emissions may cause a significant change to the climate in the Zambezi Basin in the future, but there is much uncertainty about the future climate state. This situation leaves policy makers at a state of urgency to prepare for these changes as well as reduce the impacts of the changes through GHG mitigation strategies. First and foremost, we must better understand the economic sectors most likely impacted and the magnitude of those impacts, given the inherent uncertainty. In this study, we present a suite of models that assess the effects of climate change on water resources for four countries in the Zambezi basin: Malawi, Mozambique, Zambia, and Zimbabwe. We use information from a large ensemble (6800) of climate scenarios for two GHG emission policies which represent a distribution of impacts on water-related sectors, considering emissions uncertainty, climate sensitivity uncertainty, and regional climate uncertainty. Two GHG mitigation scenarios are used to understand the effect of global emissions reduction on the River Basin system out to 2050. Under both climate polices, the majority of the basin will likely be drier, except for a portion in the north around Malawi and northern Zambia. Three Key Performance Indicators are used-flood occurrence, unmet irrigation demand, and hydropower generation-to understand the impact channels of climate change effects on the four countries. We find that floods are likely to be worse in Mozambique, irrigation demands are likely to be unmet in Mozambique and Zimbabwe, and hydropower generation is likely to be reduced in Zambia. We also find that Climatic Change (2015) 130:35-48 DOI 10.1007/s10584-014-1314 This article is part of a Special Issue on BClimate Change and the Zambezi River Valley^edited by Finn Tarp, James Juana, and Philip Ward. the range of possible impacts is much larger under an unconstrained GHG emissions case than under a strict mitigation strategy, suggesting that GHG mitigation would reduce uncertainties about the future climate state, reducing the risks of extreme changes as compared to the unconstrained emissions case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.