Nonalcoholic steatohepatitis (NASH) is the most severe and progressive form of nonalcoholic fatty liver disease (NAFLD), which can lead to life-threatening conditions, however, there is still no approved drug for the treatment of NASH. In this study we used human-like NASH mouse model and treated orally with isorhamnetin at a dose of 50 mg/kg to analyze the effect of isorhamnetin on the progression of NASH. NASH-induced mice represented severe steatosis with inflammation, and fibrosis in liver accompanied with high level of liver injury markers in serum. Isorhamnetin treatment reduced intrahepatic lipid accumulation and TG content by inhibiting de novo lipogenic pathway in NASH-induced mice. Consistent with this, isorhamnetin-treated NASH mice showed improved liver injury markers, reduced collagen deposition as well as decreased gene expression of fibrogenic markers. Taken together, here we showed for the first time that synthesized isorhamnetin alleviates pathologic features of NASH and thus can potentially contribute to NASH drug development.
Objective. The aim of this study was to investigate the prognostic value of MicroRNA-210 (miR-210) expression in patients with non-small-cell lung cancer (NSCLC). Methods. We examined the miR-210 expression of samples of 80 patients, who underwent surgical resection at Fukushima Medical University from 2004 to 2007, by using quantitative RT-PCR. The relationship between miR-210 expression and clinicopathological factors as well as histological subtype was statistically analyzed. Results. miR-210 expression showed an inverse correlation with disease-free and overall survival in patients with NSCLC. Significant correlations were found between miR-210 expression and lymph node metastasis, late disease stages, and poor prognosis in patients with adenocarcinoma. Multivariate Cox analysis indicated that miR-210 expression was an independent prognostic factor for disease-free survival in patients with adenocarcinoma. Conclusions. We showed that miR-210 may be a prognostic biomarker for patients with NSCLC, especially for those with lung adenocarcinoma.
The functions of different regulatory T cell (Treg) types in cancer progression are unclear. Recently, expression of the transcription factor Helios was proposed as a marker for natural (non-induced) Tregs. The present study investigated the clinical significance of Helios expression in patients with non-small cell lung cancer (NSCLC). We enrolled 64 patients with NSCLC, of whom 45 were treated surgically and 19 received chemotherapy because of advanced/recurrent disease. Their peripheral blood mononuclear cells were examined by flow cytometry. From the 45 surgery patients, we matched 9 patients with recurrent disease with 9 stage-matched patients without recurrence (n=18), compared their specimens immunohistochemically for tumor infiltrating lymphocytes (TILs) and analyzed these data against clinicopathological factors. Helios expression in Foxp3+ Tregs was 47.5±13.3% in peripheral blood and 18.1±13.4% in tumor specimens. Percentage of Helios− Tregs among CD4+ T cells were significantly higher in the cancer patients (2.4%), especially those with stage IA disease (2.6%) than in healthy donors (1.5%; P<0.001). Patients with low levels of Helios expression in Tregs among their TILs had significantly poorer survival (P=0.038). Helios− Tregs may affect immune suppression, even in early stage NSCLC; they could also be a useful prognostic biomarker in patients with NSCLC, and possibly a novel cancer immunotherapy target.
In response to injury and inflammation of tendons, tendon fibroblasts are activated, migrate to the wound, and eventually induce contraction of the extracellular matrices to repair the tissue. .7 were expressed in cultured tendon fibroblasts. NCX2 mRNA was undetected. NCX3 expression was negligibly low. Immunofluorescence microscopy indicated that NCX1 protein localized in the plasma membrane especially at the microspikes of tendon fibroblasts. In the wound-healing scratch assay, the cells migrated toward the space created by a scratch and almost completely filled the space within 48 h. This phenomenon was significantly suppressed by KB-R7943 and SEA0400. Furthermore, the NCX inhibitors abrogated the tendon fibroblast-mediated collagen-matrix contractions. Two types of siRNAs for NCX1 also suppressed the migration and contraction of tendon fibroblasts. We conclude that NCX is expressed and mediates Ca 2+ influx in cultured tendon fibroblasts. Since the pharmacological inhibitors and siRNA for NCX1 suppressed motility and contractility of tendon fibroblasts, NCX may play an important role in the function of tendon fibroblasts in the wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.