Teleosts comprise more than half of all vertebrate species and have adapted to a variety of marine and freshwater habitats 1 . Their genome evolution and diversification are important subjects for the understanding of vertebrate evolution. Although draft genome sequences of two pufferfishes have been published 2,3 , analysis of more fish genomes is desirable. Here we report a high-quality draft genome sequence of a small egg-laying freshwater teleost, medaka (Oryzias latipes). Medaka is native to East Asia and an excellent model system for a wide range of biology, including ecotoxicology, carcinogenesis, sex determination 4-6 and developmental genetics 7 . In the assembled medaka genome (700 megabases), which is less than half of the zebrafish genome, we predicted 20,141 genes, including 2,900 new genes, using 59-end serial analysis of gene expression tag information. We found single nucleotide polymorphisms (SNPs) at an average rate of 3.42% between the two inbred strains derived from two regional populations; this is the highest SNP rate seen in any vertebrate species. Analyses based on the dense SNP information show a strict genetic separation of 4 million years (Myr) between the two populations, and suggest that differential selective pressures acted on specific gene categories. Four-way comparisons with the human, pufferfish (Tetraodon), zebrafish and medaka genomes revealed that eight major interchromosomal rearrangements took place in a remarkably short period of 50 Myr after the whole-genome duplication event in the teleost ancestor and afterwards, intriguingly, the medaka genome preserved its ancestral karyotype for more than 300 Myr.We applied the whole-genome shotgun approach to an inbred strain, , derived from the southern Japanese population, as the main target. A total of 13.8 million reads amounting to approximately 10.6-fold genome coverage were obtained from the shotgun plasmid, fosmid and bacterial artificial chromosome (BAC) libraries. A newly developed RAMEN assembler was used to process the shotgun reads to generate contigs and scaffolds. The N50 values (50% of nucleotides in an assembly are in scaffolds-or contigs-longer than or equal to the N50 value) are ,1.41 megabases (Mb) for scaffolds and ,9.8 kilobases (Kb) for contigs. The total length of the contigs reached 700.4 Mb, which, from now on, we refer to as the medaka genome size.To construct ultracontigs, the scaffolds were integrated with the medaka genetic map by using SNP markers. For this purpose, we further obtained about 2.8-fold coverage of shotgun reads from another inbred strain HNI (refs 9, 10), which is derived from the northern Japanese population. The reads were assembled by RAMEN to scaffolds covering 648 Mb. Aligning the HNI contigs with the HdrR genome using BLASTZ 11 , we identified 16.4 million SNPs as well as 1.40 million insertions and 1.45 million deletions in non-repetitive regions (Supplementary Table 2). We selected 2,401 SNPs and genetically mapped them onto medaka chromosomes using a backcross panel between the...
Although several vertebrate genomes have been sequenced, little is known about the genome evolution of early vertebrates and how large-scale genomic changes such as the two rounds of whole-genome duplications (2R WGD) affected evolutionary complexity and novelty in vertebrates. Reconstructing the ancestral vertebrate genome is highly nontrivial because of the difficulty in identifying traces originating from the 2R WGD. To resolve this problem, we developed a novel method capable of pinning down remains of the 2R WGD in the human and medaka fish genomes using invertebrate tunicate and sea urchin genes to define ohnologs, i.e., paralogs produced by the 2R WGD. We validated the reconstruction using the chicken genome, which was not considered in the reconstruction step, and observed that many ancestral proto-chromosomes were retained in the chicken genome and had one-to-one correspondence to chicken microchromosomes, thereby confirming the reconstructed ancestral genomes. Our reconstruction revealed a contrast between the slow karyotype evolution after the second WGD and the rapid, lineage-specific genome reorganizations that occurred in the ancestral lineages of major taxonomic groups such as teleost fishes, amphibians, reptiles, and marsupials.[Supplemental material is available online at www.genome.org.]Early vertebrate genome evolution has long been in need of clarification, and it is now of particular interest because several distantly related vertebrate genomes were recently sequenced. The 2R hypothesis postulates that two rounds of whole-genome duplication (2R WGD) occurred at the base of the vertebrate lineage (Ohno 1970;Holland et al. 1994) because of the observation that invertebrates have one Hox gene cluster, whereas lobe-finned fishes and land vertebrates have four clusters. However, the 2R hypothesis has been quite controversial until recently (Skrabanek and
One of the most powerful techniques for attributing functions to genes in uni-and multicellular organisms is comprehensive analysis of mutant traits. In this study, systematic and quantitative analyses of mutant traits are achieved in the budding yeast Saccharomyces cerevisiae by investigating morphological phenotypes. Analysis of fluorescent microscopic images of triple-stained cells makes it possible to treat morphological variations as quantitative traits. Deletion of nearly half of the yeast genes not essential for growth affects these morphological traits. Similar morphological phenotypes are caused by deletions of functionally related genes, enabling a functional assignment of a locus to a specific cellular pathway. The high-dimensional phenotypic analysis of defined yeast mutant strains provides another step toward attributing gene function to all of the genes in the yeast genome.cell morphology ͉ functional genomics ͉ high-dimensional phenotyping ͉ phenome O ne of the ultimate goals of genetics is to reveal relationships between gene function and phenotypic traits. Comprehensive analysis of mutant traits is a very powerful technique for attributing functions to genes in uni-and multicellular organisms. In the budding yeast Saccharomyces cerevisiae, a complete set of mutants, each of which carries a precise deletion of one yeast ORF, has been systematically constructed (1). By using these mutant strains combined with microarray and robot technology, genome-wide analyses of various mutant traits, including general growth rate, fitness under a particular condition, and sensitivity to drugs, has been reported (reviewed in ref. 2).Cell morphology becomes an attractive target for comprehensive analysis, because more powerful methods for fluorescent microscopic imaging analysis in biological research have been emerging after development of high-resolution microscopes and specific fluorescent dyes. Yeast cell morphology reflects various cellular events, including progression through the cell cycle, establishment of cell polarity, and regulation of cell size control. Previous genome-wide studies of yeast morphology were focused on a specific morphology, such as cell size, cell shape, or bud site pattern (3-6), and therefore extracted limited information. Because morphological traits are often judged ''by eye,'' it has remained difficult to obtain quantitative and reproducible results.We recently developed an image-processing system that automatically processes digital cell images of each yeast cell (7,8) to obtain quantitative morphological data of yeast mutant cells. Mannoprotein (as a cell wall component marker), the actin cytoskeleton, and nuclear DNA are specifically stained simultaneously. Cells are then photographed, and fluorescence images are automatically processed. The obtained images of all yeast mutants and data-mining functions are available at our Saccharomyces cerevisiae Morphological Database (SCMD) web site (8,9).In this study, we employ high-dimensional and quantitative phenotyping of yeast muta...
Type 2 diabetes is one of the most prevalent and serious metabolic diseases in the world, and insulin resistance and pancreatic -cell dysfunction are the hallmarks of the disease. In this study, we have shown that endoplasmic reticulum (ER) stress, which is provoked under diabetic conditions, plays a crucial role in the insulin resistance found in diabetes by modifying the expression of oxygen-regulated protein 150 (ORP150), a molecular chaperone that protects cells from ER stress. Sense ORP overexpression in the liver of obese diabetic mice significantly improved insulin resistance and markedly ameliorated glucose tolerance. Conversely, expression of antisense ORP150 in the liver of normal mice decreased insulin sensitivity. The phosphorylation state of IRS-1 and Akt, which are key molecules for insulin signaling, and the expression levels of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, key enzymes of gluconeogenesis, were also altered by ORP150 overexpression. This is the first report showing that ER stress plays a crucial role in the insulin resistance found in diabetes and thus could be a potential therapeutic target for diabetes.
The JNK pathway is known to be activated in several tissues in the diabetic state, and is possibly involved in the development of insulin resistance and suppression of insulin biosynthesis. Here we show a potential new therapy for diabetes using cell-permeable JNK-inhibitory peptide. Intraperitoneal administration of the peptide led to its transduction into various tissues in vivo, and this treatment markedly improved insulin resistance and ameliorated glucose tolerance in diabetic mice. These data indicate that the JNK pathway is critically involved in diabetes and that the cell-permeable JNK-inhibitory peptide may have promise as a new therapeutic agent for diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.