Macrophage type-I and type-II class-A scavenger receptors (MSR-A) are implicated in the pathological deposition of cholesterol during atherogenesis as a result of receptor-mediated uptake of modified low-density lipoproteins (mLDL). MSR-A can bind an extraordinarily wide range of ligands, including bacterial pathogens, and also mediates cation-independent macrophage adhesion in vitro. Here we show that targeted disruption of the MSR-A gene in mice results in a reduction in the size of atherosclerotic lesions in an animal deficient in apolipoprotein E. Macrophages from MSR-A-deficient mice show a marked decrease in mLDL uptake in vitro, whereas mLDL clearance from plasma occurs at a normal rate, indicating that there may be alternative mechanisms for removing mLDL from the circulation. In addition, MSR-A-knockout mice show an increased susceptibility to infection with Listeria monocytogenes or herpes simplex virus type-1, indicating that MSR-A may play a part in host defence against pathogens.
Hemophilia A is a bleeding disorder resulting from coagulation factor VIII (FVIII) deficiency. Exogenously provided FVIII effectively reduces bleeding complications in patients with severe hemophilia A. In approximately 30% of such patients, however, the 'foreignness' of the FVIII molecule causes them to develop inhibitory antibodies against FVIII (inhibitors), precluding FVIII treatment in this set of patients. Moreover, the poor pharmacokinetics of FVIII, attributed to low subcutaneous bioavailability and a short half-life of 0.5 d, necessitates frequent intravenous injections. To overcome these drawbacks, we generated a humanized bispecific antibody to factor IXa (FIXa) and factor X (FX), termed hBS23, that places these two factors into spatially appropriate positions and mimics the cofactor function of FVIII. hBS23 exerted coagulation activity in FVIII-deficient plasma, even in the presence of inhibitors, and showed in vivo hemostatic activity in a nonhuman primate model of acquired hemophilia A. Notably, hBS23 had high subcutaneous bioavailability and a 2-week half-life and would not be expected to elicit the development of FVIII-specific inhibitory antibodies, as its molecular structure, and hence antigenicity, differs from that of FVIII. A long-acting, subcutaneously injectable agent that is unaffected by the presence of inhibitors could markedly reduce the burden of care for the treatment of hemophilia A.
Clonal deletion and functional inactivation of self-reactive cells have been invoked as mechanisms underlying intrathymic development of T-cell tolerance. The relative importance of these mechanisms in the development of tolerance of more mature, peripheral T cells either to self or to exogenous antigens is unclear, although recent data relate the development of T-cell tolerance in the periphery to clonal anergy. We have now investigated the induction of extrathymic tolerance using BALB/c mice that were made tolerant to Staphylococcus aureus enterotoxin B, a superantigen which specifically interacts in such mice with T cells bearing V beta 8 antigen receptors. Both euthymic and athymic mice made tolerant to S. aureus enterotoxin B had a markedly reduced number of V beta 8.1,2+ CD4+ peripheral T cells. This reduction was accompanied by genomic DNA fragmentation that is associated with cell death. These results indicate that a deletional mechanism can contribute to the induction of T-cell tolerance in peripheral lymphoid cells.
For many antibodies, each antigen-binding site binds to only one antigen molecule during the antibody's lifetime in plasma. To increase the number of cycles of antigen binding and lysosomal degradation, we engineered tocilizumab (Actemra), an antibody against the IL-6 receptor (IL-6R), to rapidly dissociate from IL-6R within the acidic environment of the endosome (pH 6.0) while maintaining its binding affinity to IL-6R in plasma (pH 7.4). Studies using normal mice and mice expressing human IL-6R suggested that this pH-dependent IL-6R dissociation within the acidic environment of the endosome resulted in lysosomal degradation of the previously bound IL-6R while releasing the free antibody back to the plasma to bind another IL-6R molecule. In cynomolgus monkeys, an antibody with pH-dependent antigen binding, but not an affinity-matured variant, significantly improved the pharmacokinetics and duration of C-reactive protein inhibition. Engineering pH dependency into the interactions of therapeutic antibodies with their targets may enable them to be delivered less frequently or at lower doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.