In this paper, we present the optical characterisations of diabetic red blood cells (RBCs) in a non-invasive manner employing three-dimensional (3-D) quantitative phase imaging. By measuring 3-D refractive index tomograms and 2-D time-series phase images, the morphological (volume, surface area and sphericity), biochemical (haemoglobin concentration and content) and mechanical (membrane fluctuation) parameters were quantitatively retrieved at the individual cell level. With simultaneous measurements of individual cell properties, systematic correlative analyses on retrieved RBC parameters were also performed. Our measurements show there exist no statistically significant alterations in morphological and biochemical parameters of diabetic RBCs, compared to those of healthy (non-diabetic) RBCs. In contrast, membrane deformability of diabetic RBCs is significantly lower than that of healthy, non-diabetic RBCs. Interestingly, non-diabetic RBCs exhibit strong correlations between the elevated glycated haemoglobin in RBC cytoplasm and decreased cell deformability, whereas diabetic RBCs do not show correlations. Our observations strongly support the idea that slow and irreversible glycation of haemoglobin and membrane proteins of RBCs by hyperglycaemia significantly compromises RBC deformability in diabetic patients.
Major histocompatibility complex (MHC) class I chain-related gene B (MICB) is located within the human MHC class I region. The location of MICB in the MHC region may imply the presence of linkage disequilibrium with polymorphic MICA and human leukocyte antigen (HLA) loci. MICB is also polymorphic; however, MICB polymorphisms have not been investigated in Koreans. Using sequence-based typing (SBT), we estimated the allelic frequencies of MICB and haplotypes with MICA, HLA-B, and HLA-DRB1 at high resolution in a population of 139 unrelated Korean individuals. Eight MICB alleles were identified. The most frequent allele was MICB*005:02/*010 (57.2%), followed by *002 (11.5%), *004 (8.3%), *005:03 (8.3%), and *008 (6.8%). The most common two-locus haplotypes were MICB*005:02/*010-MICA*010 (19.4%), MICB*005:02/*010-DRB1*15:01 (6.5%), and MICB*005:02/*010-B*15:01 (10.4%); the most common three-locus haplotypes were B*15:01-MICA*010-MICB*005:02/*010 (5.8%) and MICA*010-MICB*005:02/*010-DRB1*04:06 (10.4%); and the most common four-locus haplotype was B*15:01-MICA*010-MICB*005:02/*010-DRB1*04:06 (5.8%). This is the first study to provide information about MICB allele frequencies and haplotypes with HLA in Koreans. These study results should help understand mechanisms of disease association between the MICB locus and neighboring loci in Koreans.
Culture is the gold standard for diagnosis of tuberculosis, but it takes 6 to 8 weeks to confirm the result. This issue is complemented by the detection method using polymerase chain reaction, which is now widely used in a routine microbiology laboratory. In this study, we evaluated the performance of the Seegene Anyplex TB PCR to assess its diagnostic sensitivity and specificity, and compared its results with the Roche Cobas TaqMan MTB PCR, one of the most widely used assays in the world. Five university hospitals located in the Chungcheong area in South Korea participated in the study. A total of 1,167 respiratory specimens ordered for acid-fast bacilli staining and culture were collected for four months, analyzed via the Seegene Anyplex TB PCR, and its results were compared with the Roche Cobas TaqMan MTB PCR. For detection of Mycobacterium tuberculosis, the diagnostic sensitivity and specificity of the Anyplex TB PCR were 87.5% and 98.2% respectively, whereas those of the Cobas TaqMan were 92.0% and 98.0% respectively (p value > 0.05). For smear-positive specimens, the sensitivity of the Anyplex TB PCR was 95.2%, which was exactly the same as that of the Cobas TaqMan. For smear-negative specimens, the sensitivity of the Anyplex TB PCR was 69.2%, whereas that of the Cobas TaqMan TB PCR was 84.6%. For detection of MTB, the Seegene Anyplex TB PCR showed excellent diagnostic performance, and high sensitivity and specificity, which were comparable to the Roche Cobas TaqMan MTB PCR. In conclusion, the Anyplex TB PCR can be a useful diagnostic tool for the early detection of tuberculosis in clinical laboratories.
Major histocompatibility complex (MHC) class I chain-related gene A (MICA) is located within the human MHC, centromeric to HLA-B and telomeric to HLA-DRB1. The location of MICA in the MHC indicates the presence of linkage disequilibrium with human leukocyte antigen (HLA). Like HLA, MICA is highly polymorphic; however, the information available for MICA polymorphisms is not as comprehensive as that for HLA polymorphisms. We estimated the allelic frequencies of MICA and haplotypes with HLA-B and HLA-DRB1 at high-resolution in a population of 139 unrelated Korean individuals by applying the newly developed method of sequence-based typing (SBT). A total of 17 MICA alleles were identified. The most frequent allele was MICA*010 (19.4%), followed by alleles *00201 (17.6%), *00801 (14.7%), *01201 (9.4%), *004 (8.3%) and *049 (7.9%). The most common two- and three-locus haplotypes were HLA-B*1501-MICA*010 (10.4%), MICA*010-HLA-DRB1*0406 (5.8%) and HLA-B*1501-MICA*010-HLA-DRB1*0406 (5.8%). This is the first study to provide such high-resolution information on the distribution of haplotypes comprising MICA, HLA-B and HLA-DRB1 in Korean individuals, a level of resolution made possible by use of the SBT method. The results of this study should help determine the mechanisms underlying diseases associated with MICA polymorphisms in Korean individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.