There is growing interest in conservative treatment of Achilles tendon rupture. However, the majority of experimental studies of Achilles tendon have been performed by open tenotomy. More appropriate model of conservative treatment of Achilles tendon rupture is required. We performed an experimental study to evaluate whether outcomes differ between open tenotomy and percutaneous tenotomy of the Achilles tendon in rats. The Achilles tendons of 48 rats were transected. The animals were divided into two groups according to surgical technique: open tenotomy or microscopy‐assisted percutaneous tenotomy. After 1, 2, and 4 weeks, functional, biomechanical, and histological analyses were performed. Western blot was performed for quantitative molecular analysis at 1 week. The Achilles functional index was superior in the percutaneous tenotomy group, compared with the open tenotomy group, at 1 week. The cross‐sectional area was significantly larger in the percutaneous tenotomy group than in the open tenotomy group at 4 weeks. Relative to the native tendons, load to failure and stiffness yielded comparable results at 2 weeks in the percutaneous tenotomy group and at 4 weeks in the open tenotomy group. The histological score was significantly better in the percutaneous tenotomy group than in the open tenotomy group at 1 week. At 1 week, interleukin‐1β expression in the open tenotomy group was higher than in the percutaneous tenotomy group. In summary, Achilles tendon healing was substantially affected by the tenotomy method. We presume that our percutaneous tenotomy method might constitute a useful experimental animal model for conservative treatment of Achilles tendon rupture.
Recently, soft electronics have attracted significant attention for various applications such as flexible devices, artificial electronic skins, and wearable devices. For practical applications, the key requirements are an appropriate electrical conductivity and excellent elastic properties. Herein, using the cyano− silver complexes resulting from coordination bonds between the nitrile group of poly(styrene-co-acrylonitrile) (SAN) and Ag ions, a self-healing elastomer demonstrating electrical conductivity is obtained. Because of these coordination complexes, the Ag−SAN elastomer possesses elasticity, compared with pristine SAN. The fracture strain of the Ag−SAN elastomers increased with the amount of added Ag ions, reaching up to 1000%. Additionally, owing to the presence of reversible coordination bonds, the elastomer exhibits self-healing properties at room temperature and electrical conductivity, thereby improving the possibility of its utilization in novel applications wherein elastic materials are generally exposed to external stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.