Melanogenesis is the process of melanin synthesis through keratinocytes-melanocytes interaction, which is triggered by the damaging effect of ultraviolet-B (UVB) rays. It is known that melanogenesis influences diverse cellular responses, including cell survival and apoptosis, via complex mechanisms of feedback and crosstalk. Therefore, an attempt to suppress melanin production by modulating the melanogenesis pathway may induce perturbations in the apoptotic balance of the cells in response to UVB irradiation, which results in various skin diseases such as melasma, vitiligo, and skin cancer. To identify such appropriate target strategies for the reduction of UVB-induced melanin synthesis, we reconstructed the melanogenesis signaling network and developed a Boolean network model. Mathematical simulations of the melanogenesis network model revealed that the inhibition of beta-catenin in the melanocytes effectively reduce melanin production while having minimal influence on the apoptotic balance of the cells. Exposing cells to a beta-catenin inhibitor decreased pigmentation but did not significantly change the B-cell Chronic lymphocytic leukemia/lymphoma 2 expression, a potent regulator of apoptotic balance. Thus, our systems analysis suggests that the inhibition of beta-catenin may be the most appropriate target strategy for the reduction of UVB-induced skin pigmentation.
Pigmentation reflects skin darkening caused by melanin production, but excessive melanin synthesis may cause problems, such as melasma, solar lentigo, dark spots, and freckles. Considerable effort has been devoted to alleviating these undesired symptoms through the development of safe and effective depigmenting agents. Coumestrol, a plant-derived natural isoflavone with an estrogen-like structure and actions, is known to have anti-aging ability, but its potential depigmenting efficacy has not been evaluated. In the present study, we investigated the effects of coumestrol on melanin synthesis in normal melan-a murine melanocytes. Coumestrol significantly reduced melanin synthesis in a concentration-dependent manner up to a concentration of 25 µM without causing cytotoxicity. It also brightened tissue in an artificial skin model (MelanoDerm) that incorporates both human keratinocytes and melanocytes. Interestingly, although coumestrol did not inhibit tyrosinase activity or transcript level in melan-a cells, it clearly decreased the expression level of tyrosinase protein at a concentration of 25 µM. This coumestrol-induced reduction in tyrosinase protein levels was prevented by pretreatment with the proteasome inhibitor MG-132 or the lysosomal proteolysis inhibitor chloroquine. Collectively, our findings indicate that coumestrol exerts an inhibitory effect on melanin synthesis in melan-a cells, at least in part, through degradation of tyrosinase. These findings suggest that coumestrol is a good candidate for use in depigmentary reagents from a cosmetic and clinical perspective.
The development of melanogenic inhibitors is important for the prevention of hyperpigmentation, and, recently, consideration has been given to natural materials or traditionally used ingredients such as Chinese medicine. The aim of this study is the evaluation of a new anti-melanogenic candidate, kadsuralignan F, from the natural plant Kadsura coccinea, as well as the determination of mechanisms of melanogenesis inhibition at a molecular level. Kadsuralignan F significantly reduced melanin synthesis in a dose-dependent manner in a murine melanocyte cell line and human skin equivalents. There was no direct inhibition on mushroom tyrosinase or cell-extract tyrosinase activity, and mRNA expression of tyrosinase and other melanogenic genes such as tyrosinase-related protein-1 (trp-1) or trp-2 were not affected by kadsuralignan F. Interestingly, the protein level of tyrosinase was dramatically downregulated with kadsuralignan F treatment. We found that a decrease of tyrosinase protein by kadsuralignan F was fully recovered by MG132, a proteasome inhibitor, but not by chloroquine, a lysosome inhibitor. In this study, we found that kadsuralignan F, a lignan from an extract of Kadsura coccinea, has an inhibitory activity on melanin synthesis through tyrosinase degradation. These findings suggest that kadsuralignan F can be used as an active ingredient for hyperpigmentation treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.